Published online by Cambridge University Press: 03 August 2020
The strain rate sensitivity (m) of (Ni0.92Zr0.08)100−xAlx (0 ≤ x ≤ 4 at.%) eutectic with varying average lamellae thickness (λw) in the range of 39–275 nm has been investigated in the strain rate range of 8 × 10−5 and 8 × 10−3 s−1 at room temperature. The microstructure of the nano-/ultrafine eutectic composites (NECs) is comprised of alternate lamellae of fcc γ-Ni and Ni5Zr along with 20–31 vol% γ-Ni dendritic phase. The m value of all the investigated NECs lies between 0.0080 and 0.0102, whereas the activation volume (V*) has been estimated to be between 29.7b3 and 49.8b3. High-resolution transmission electron microscopy studies confirm the dislocation-mediated plastic flow including dislocation–lamellae interaction, and their pile-up at the interface, which result in the narrow variation of m for a wide range of λw due to its interlocked lamellar microstructure. A mathematical model has been developed to correlate the m with λw for the experimented NECs with wide microstructure length scale and solute content.