Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T07:44:16.808Z Has data issue: false hasContentIssue false

Strained structure of differently prepared amorphous TiO2 nanoparticle: Molecular dynamics study

Published online by Cambridge University Press:  24 August 2011

Kulbir Kaur*
Affiliation:
Department of Physics, Panjab University, Chandigarh 160014, India
Satya Prakash
Affiliation:
Department of Physics, Panjab University, Chandigarh 160014, India
Navdeep Goyal
Affiliation:
Department of Physics, Panjab University, Chandigarh 160014, India
*
a)Address all correspondence to this author. e-mail: kulbir28@yahoo.com
Get access

Abstract

Matusi–Akaogi force field is used in molecular dynamics simulations to generate three samples of amorphous TiO2 of 3-nm size under different heating and quenching rates. The averaged pair correlation functions, coordination numbers, bond lengths, bond angles, and dihedral angles are calculated at 315 K. It is found that overcoordinated Ti and O atoms are in the core region, 6- and 3-fold coordinated Ti and O atoms are in the central part, and undercoordinated Ti and O atoms are in the vicinity of the surface. The correlations are significant up to 10 Å and vanish at the particle size. The calculated averaged bond lengths for short-range interparticle correlations agree with the experimental data. The discrete bond angles and dihedral angles of crystalline sphere get distributed over complete range in the amorphous phase and closer strained atomic network is predicted. The relative variance in the atomic arrangements in three samples is within 4%.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schneider, S.J. Jr. (editor): Ceramics and Glasses, Vol. 4 (The Material Information Society, NewYork, 1991).Google Scholar
2.Ye, X., Sha, J., Jiao, Z., and Zhang, L.: Thermoanalytical characteristic of nanocrystalline brookite-based titanium dioxide. Nanostruct. Mater. 8, 919 (1997).CrossRefGoogle Scholar
3.Petkov, V., Holzhuter, G., Tronge, U., Gerber, Th., and Himmel, B.: Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations. J. Non-Cryst. Solids 231, 17 (1998).CrossRefGoogle Scholar
4.Zhang, H.Z., Chen, B., Banfield, J.F., and Waychunas, G.A.: Atomic structure of nanometer-sized amorphous TiO2. Phys. Rev. B 78, 214106 (2008).CrossRefGoogle Scholar
5.Ahonen, P.P., Kauppinen, E.I., Joubert, J.C., Deschanvres, J.L., and Tendeloo, G.V.: Preparation of nanocrystalline titania powder via aerosol pyrolysis of titanium tetrabutoxide. J. Mater. Res. 14, 3938 (1999).CrossRefGoogle Scholar
6.Okada, K., Yamamoto, N., Kameshima, Y., and Yasumori, A.: Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 84, 1591 (2001).CrossRefGoogle Scholar
7.Yoshinaka, M., Hirota, K., and Yamaguchi, O.: Formation and sintering of TiO2 (anatase) solid solution in the System TiO2–SiO2. J. Am. Ceram. Soc. 80, 2749 (1997).CrossRefGoogle Scholar
8.Yang, J., Mei, S., and Ferreira, J.M.F.: Hydrothermal synthesis of nanosized titania powders: Influence of peptization and peptizing agents on the crystalline phases and phase transitions. J. Am. Ceram. Soc. 83, 1361 (2000).CrossRefGoogle Scholar
9.Wang, C., Deng, Z-X., and Li, Y.: The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg. Chem. 40, 5210 (2001).CrossRefGoogle ScholarPubMed
10.Nakade, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., and Yanagida, S.: Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B 106, 10004 (2002).CrossRefGoogle Scholar
11.Wu, M., Lin, G., Chen, D., Wang, G., He, D., Feng, S., and Xu, R.: Sol hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem. Mater. 14, 1974 (2002).CrossRefGoogle Scholar
12.Aruna, S.T., Tirosh, S., and Zaban, A.: Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388 (2000).CrossRefGoogle Scholar
13.Zhang, H.Z. and Banfield, J.F.: Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. J. Chem. Mater. 14, 4145 (2002).CrossRefGoogle Scholar
14.Rande, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., and Whitfield, H.J.: Energetics of nanocrystalline TiO2. Colloquim 99(Suppl. 2), 6476 (2002).Google Scholar
15.Wei, X., Skomski, R., Balamurugan, B., Sun, Z.G., Ducharme, S. and Sellmyer, D.J.: Magnetism of TiO and TiO2 nanoclusters. J. Appl. Phys. 105, 07C517 (2009).CrossRefGoogle Scholar
16.Matsui, M. and Akaogi, M.: Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2. Mol. Simul. 6, 239 (1991).CrossRefGoogle Scholar
17.Collins, D.R., Smith, W., Harrison, N.M., and Forester, T.R.: Molecular dynamics study of the high temperature fusion of TiO2 nanoclusters. J. Mater. Chem. 7, 2543 (1997).CrossRefGoogle Scholar
18.Naicker, P.K., Cummings, P.T., Zhang, H., and Banfield, J.F.: Characterization of titanium dioxide nanoparticles using molecular dynamics simulation. J. Phys. Chem. B 109, 15243 (2005).CrossRefGoogle Scholar
19.Filyukov, D.V., Brodskaya, E.N., Piotrovskaya, E.M., and de Leeuw, S.W.: Molecular-dynamics simulation of nanoclusters of crystal modifications of titanium dioxide. Russ. J. Chem. 77, 10 (2007).CrossRefGoogle Scholar
20.Koparde, V.N. and Cummings, P.T.: Molecular dynamics simulation of titanium dioxide nanoparticles sintering. J. Phys. Chem. B 109, 24280 (2005).CrossRefGoogle Scholar
21.Hoang, V.V., Zung, H., and Trong, N.H.B.: Structural properties of amorphous TiO2 nanoparticles. Eur. Phys. J. D 44, 515 (2007).CrossRefGoogle Scholar
22.Hoang, V.V.: Pressure-induced structural transition in amorphous TiO2 nanoparticles and in the bulk via molecular dynamics simulation. J. Phys. D: Appl. Phys. 40, 7454 (2007).CrossRefGoogle Scholar
23.Hoang, V.V.: Structural properties of simulated liquid and amorphous TiO2. Phys. Status Solidi 244, 1280 (2007); V.V. Hoang: The glass transition and thermodynamics of liquid and amorphous TiO2 nanoparticles. Nanotechnology 19, 105706 (2008).CrossRefGoogle Scholar
24.Vinh, Le The, Quan, Nguyen Minh, Hiep, Duong Cong, Hong, Nguyen Van, Nhan, Nguyen Thu, and Hung, Pham Khac: Computer simulation of amorphous TiO2. Adv. Nat. Sci. 10, 307 (2009).Google Scholar
25.Rino, J-P. and Studart, N.: Structural correlations in titanium dioxide. Phys. Rev. B 59, 6643 (1999).CrossRefGoogle Scholar
26.Lei, M., de Graff, A.M.R., Thorpe, M.F., Wells, S.A., and Sartbaeva, A.: Uncovering the intrinsic geometry from the atomic pair distribution function of nanomaterials. Phys. Rev. B 80, 024118 (2009).CrossRefGoogle Scholar
27.Smith, W. and Todorov, I.T.: A short description of DL_POLY. Mol. Simul. 32, 935 (2006).CrossRefGoogle Scholar
28.Singh, R., Prakash, S., Shukla, N.N., and Prasad, R.: Sample dependence of the structural, vibrational, and electronic properties of a-Si:H: A density-functional-based tight-binding study. Phys. Rev. B 70, 115213 (2004).CrossRefGoogle Scholar
29.Yeung, K.L., Maira, A.J., Stolz, J., Hung, E., Ho, N.K-C., Wei, A.C., Soria, J., Chao, K-J., and Yue, P.L.: Ensemble effects in nanostructured TiO2 used in the gas-phase photooxidation of trichloroethylene. J. Phys. Chem. B 106, 4608 (2002).CrossRefGoogle Scholar
30.Rajh, T., Poluektov, O., Dubinski, A.A., Wiederrecht, G., Thurnauer, M.C., and Trifunac, A.D.: Spin polarization mechanisms in early stages of photoinduced charge separation in surface-modified TiO2 nanoparticles. Chem. Phys. Lett. 344, 31 (2001).CrossRefGoogle Scholar
31.Chen, L.X., Rajh, T., Jager, W., Nedeljkovic, J., and Thurnauer, M.C.: X-ray absorption reveals surface structure of titanium dioxide nanoparticles. J. Synchrotron Radiat. 6, 445 (1999).CrossRefGoogle ScholarPubMed
32.Manzini, I., Antanioli, G., Bersani, D., Lottici, P.P., Gnappi, G., and Montonero, A.: X-ray absorption spectroscopy study of crystallization processes in sol-gel-derived TiO2. J. Non-Cryst. Solids 519, 192 (1995).Google Scholar
33.Bragg, W.L.: Atomic Structure of Minerals (Cornell Univ. Press, New York, 1937).Google Scholar