Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T00:06:21.110Z Has data issue: false hasContentIssue false

Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites

Published online by Cambridge University Press:  31 March 2014

Tushar Borkar
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203
Jaewon Hwang
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Jun Yeon Hwang
Affiliation:
Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 565-905, Korea
Thomas W. Scharf
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203
Jaimie Tiley
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, Ohio 45433
Soon Hyung Hong*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Rajarshi Banerjee*
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203
*
a)Address all correspondence to these authors. e-mail: Rajarshi.Banerjee@unt.edu
Get access

Abstract

Two types of carbon nanotube reinforced nickel (CNT/Ni) nanocomposites were processed, both involving spark plasma sintering (SPS) of precursor powders consisting of nickel and carbon nanotubes. The first type involved simple mechanical dry milling of nickel and CNT powders, followed by sintering using SPS, resulting in nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel with a strength of 160 MPa) and about 30% elongation to failure. In contrast, the nanocomposites processed by SPS of powders prepared by molecular-level mixing (MLM) exhibited substantially higher tensile yield strength of 690 MPa but limited ductility with an 8% elongation to failure. While the former type of processing involving dry-milling is expected to be lower in cost as well as easy to scale-up, the latter type of processing technique involving MLM leads to a more homogeneous distribution of nanotubes, leading to extraordinarily high strength levels.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Harris, P.: Carbon nanotube composites. Int. Mater. Rev. 49, 31 (2004).CrossRefGoogle Scholar
Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng., R 74(10), 281 (2013).CrossRefGoogle Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
Iijima, S. and Ichlhashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).CrossRefGoogle Scholar
Zhang, Y., Ichihashi, T., Landree, E., Nihey, F., and Iijima, S.: Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285, 1719 (1999).10.1126/science.285.5434.1719CrossRefGoogle ScholarPubMed
Liao, J., Tan, M., and Sridhar, I.: Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater. Des. 31, S96 (2010).CrossRefGoogle Scholar
Chu, K., Jia, C., Jiang, L., and Li, W.: Improvement of interface and mechanical properties in carbon nanotube reinforced Cu-Cr matrix composites. Mater. Des. 45, 407 (2013).10.1016/j.matdes.2012.09.027CrossRefGoogle Scholar
Li, Q., Vierecki, A., Rottmair, C., and Singer, R.: Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 1193 (1993).CrossRefGoogle Scholar
Guiderdoni, C., Estournes, C., Peigney, A., Weibel, A., Turq, V., and Laurent, C.: The preparation of double-walled carbon nanotube/Cu composites by spark plasma sintering, and their hardness and friction properties. Carbon 49, 4535 (2011).CrossRefGoogle Scholar
Esawi, A., Morsi, E., Sayed, A., Gawad, A., and Borah, P.: Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng., A 508, 167 (2009).CrossRefGoogle Scholar
Lahiri, D., Bakshi, S., Keshri, A., Liu, Y., and Agarwal, A.: Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng., A 523, 263 (2009).10.1016/j.msea.2009.06.006CrossRefGoogle Scholar
Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawassaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570 (2009).CrossRefGoogle Scholar
Uddin, S., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Holler, H., Wienecke, U., Roth, S., and Frecht, H.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 70, 2253 (2010).CrossRefGoogle Scholar
Cho, S., Kikuchi, K., Miyazaki, T., Takagi, K., Kawasaki, A., and Tsukada, T.. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scr. Mater. 63, 375 (2011).CrossRefGoogle Scholar
Bakshi, S., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites: A review. Int. Mater. Rev. 55, 41 (2010).CrossRefGoogle Scholar
Singh, A.R.P., Hwang, J.Y., Scharf, T., Tiley, J., and Banerjee, R.: Bulk nickel-carbon nanotube nanocomposites by laser deposition. Mater. Sci. Technol. 26, 1393 (2010).CrossRefGoogle Scholar
Wei, C., Xue, F., and Jiehe, S.: Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering. Rare Metals 31, 48 (2012).Google Scholar
George, R., Kashyap, K., Rahul, R., and Yamdagni, S.: Strengthening in carbon/aluminum (CNT/Al) composites. Scr. Mater. 53, 1159 (2005).CrossRefGoogle Scholar
Kim, K., Cha, S., Hong, S., and Hong, S.: Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng., A 430, 27 (2006).CrossRefGoogle Scholar
Scharf, T., Niera, A., Hwang, J., Tiley, J., and Banerjee, R.: Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys. 106, 013508-1 (2009).10.1063/1.3158360CrossRefGoogle Scholar
Kim, K., Eckert, J., Menzel, S., Gemming, T., and Hong, S.: Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites. Appl. Phys. Lett. 92, 121901 (2008).CrossRefGoogle Scholar
Yamanaka, S., Gonda, R., Kawasaki, A., Sakamoto, H., Mekuchi, Y., Kuno, M., and Tsukada, T.: Fabrication and thermal properties of carbon nanotube/nickel composite by spark plasma sintering method. Mater. Trans. 48(9), 2506 (2007).CrossRefGoogle Scholar
Esawi, A., Morsi, K., Sayed, A., Taher, M., and Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Comps. Sci. Technol. 70, 2237 (2010).CrossRefGoogle Scholar
Cha, S., Kim, K., Arshad, S., Mo, C., and Hong, S.: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 1377 (2005).CrossRefGoogle Scholar
Hwang, J.Y., Lim, B., Tiley, J., Banerjee, R., and Hong, S.: Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing. Carbon 57, 282 (2013).CrossRefGoogle Scholar
Cha, S., Kim, K., Lee, H., Mo, C., and Hong, S.: Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr. Mater. 53, 793 (2005).CrossRefGoogle Scholar
Kim, K., Cha, S., and Hong, S.: Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng., A 449451, 46 (2007).CrossRefGoogle Scholar
Kim, K., Eckert, J., Liu, G., Park, J., Kim, B., and Hong, S.: Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr. Mater. 64(2), 181 (2011).CrossRefGoogle Scholar
Munir, Z. and Quach, D.: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94(1), 1 (2011).CrossRefGoogle Scholar
Hulbert, D., Anders, A., Andersson, J., Lavernita, E., and Mukherjee, A.: A discussion on the absence of plasma in spark plasma sintering. Scr. Mater. 60, 835 (2009).10.1016/j.scriptamat.2008.12.059CrossRefGoogle Scholar
Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 (2000).CrossRefGoogle Scholar
Chen, W., Tamburini, U., Garay, J., Groza, J., and Munir, Z.: Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater. Sci. Eng., A 394, 132 (2005).CrossRefGoogle Scholar
Borkar, T. and Harimkar, S.: Microstructure and wear behavior of pulse electrodeposited CNT/Ni composite coatings. Surf. Eng. 27, 524 (2011).CrossRefGoogle Scholar
Behler, K., Osswald, S., Ye, H., Dimovski, S., and Gogotsi, Y.: Effect of thermal treatment on the structure of multi-walled carbon nanotubes. J. Nanopart. Res. 8(5), 615 (2006).CrossRefGoogle Scholar
Hwang, J.Y., Neira, A., Scharf, T.W., Tiley, J., and Banerjee, R.: Laser-deposited carbon nanotube reinforced nickel matrix composites. Scr. Mater. 59(5), 487 (2008).CrossRefGoogle Scholar
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1), 47 (2007).CrossRefGoogle Scholar
Tuinstra, F. and Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
Inam, F., Yan, H., Reece, M.J., and Peijs, T.: Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv. Appl. Ceram. 109(4), 240 (2010).10.1179/174367509X12595778633336CrossRefGoogle Scholar
Bakshi, S., Musaramthota, V., Virzi, D., Keshri, A., Lahiri, D., Singh, V., and Agarwal, A.: Spark plasma sintered tantalum carbide–carbon nanotube composite: Effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater. Sci. Eng., A 528(6), 2538 (2011).CrossRefGoogle Scholar
Krasilnikov, N., Lojkowski, W., Pakiela, Z., and Valiev, R.: Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Mater. Sci. Eng., A 397, 330 (2005).CrossRefGoogle Scholar