Published online by Cambridge University Press: 31 January 2011
Using the microindentation test, the stress-assisted-electrochemical corrosion of Cu46.25Zr45.25Al7.5Er1 bulk metallic glass (BMG) was studied in a 10 wt% NaCl electrolyte. The microindentation was performed in an indentation load range of 500 to 4000 mN to create shear bands over the deformation zone. Electric current of various densities was passed through the indented BMGs to evaluate the effect of shear bands and localized deformation on the electrochemical corrosion of the BMGs. Surface pits always initiated from the shear-banding zone and the contact edges between the indenter and the BMGs, and the size of the corroded zone grew with the increase in the polarization time, the indentation load, and the current density. Wormlike amorphous whiskers were formed over the corroded zone, and the density of the wormlike whiskers increased with the current density and polarization time.