Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T07:00:53.622Z Has data issue: false hasContentIssue false

Strong Quantum Confinement in Ordered PbSe Nanowire Arrays

Published online by Cambridge University Press:  31 January 2011

X. S. Peng*
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
G. W. Meng
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
J. Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
X. F. Wang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
C. Z. Wang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
X. Liu
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
L. D. Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
*
a)Address all correspondence to this author. e-mail: zyzhao@mail.issp.ac.cn
Get access

Abstract

Ordered PbSe crystalline nanowire arrays have been successfully fabricated in the nanochannels of porous anodic alumina membrane by direct current electrodeposition. X-ray diffraction and selected area electron diffraction investigations demonstrate that the PbSe nanowires have a uniform cubic structure. Electromicroscopy results show that the nanowires are quite ordered with diameters of about 50 nm and lengths up to 5 micrometers. X-ray energy dispersion analysis indicate that Pb:Se is very close to 1:1. The optical absorption spectrum of these PbSe nanowires show that there exist two peaks at 280 and 434 nm, respectively, attribute to excitonic absorption peaks.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yoffe, A.D., Adv. Phys. 42, 173 (1993).CrossRefGoogle Scholar
2.Alivisatas, A.P., J. Phys. Chem. 100, 13226 (1996).CrossRefGoogle Scholar
3.Routkevitch, D., Bigioni, T., Mostovits, M., and Xu., J., J. Phys. Chem. 100, 14037 (1996).CrossRefGoogle Scholar
4.Xu, D., Chen, D., Xu, Y., Shi, X., Guo, G., Gui, L., and Tang, Y., Pure Appl. Chem. 72, 127 (2000).CrossRefGoogle Scholar
5.Xu, D., Shi, X., Guo, G., Gui, L., and Tang, Y., J. Phys. Chem. B 104, 5061 (2000).CrossRefGoogle Scholar
6.Cheng, G.S., Zhang, L.D., Zhu, Y., Fei, G.T., Li, Y., Mo, C.M., and Mao, Y.Q., Appl. Phys. Lett. 75, 2455 (1999).CrossRefGoogle Scholar
7.Wise, F.W., Acc. Chem. Res. 33, 773 (2000).CrossRefGoogle Scholar
8.Johnson, T.H., Proc. SPIE Int. Soc. Opt. Eng. 443, 60 (1984).Google Scholar
9.Malyarevich, A.M., Denisovm, I.A., Posnov, N.N., Prokoshin, P.V., Yumashev, K.V., and Lopovskii, A.A., 15th Topical Meeting Advanced Solid State lasers, 13–16 February 2000, Davis, Switzerland.Google Scholar
10.Gorer, S., Albu-Yaron, A., and Hodes, G., Chem. Mater. 7, 1243 (1995).CrossRefGoogle Scholar
11.Zogg, H., Maissen, C., Masek, J., Hoshino, T., Bluunier, S., and Tiwari, A.N., Semicond. Sci. Technol. 6, C36 (1990).CrossRefGoogle Scholar
12.Das, V. Damoradara and Bhat, K. Seetharama, J. Mater. Sci. 1, 983 (1996).Google Scholar
13.Saloniemi, H., Kemell, M., Ritala, M., and Leskela¨, M., J. Mater. Chem. 10, 519 (2000).CrossRefGoogle Scholar
14.Saloniemi, H., Kanniainen, T., Ritala, M., Leskela¨, M., and Lappalainen, R., J. Mater. Chem., 6, 651 (1998).CrossRefGoogle Scholar
15.Molin, A.N. and Dikusar, A.J., Thin Solid Films 265, 3 (1995).CrossRefGoogle Scholar
16.Nielch, K., Mu¨ller, F., Li, A., and Go¨sele, U., Adv. Mater. 12, 582 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
17.Strijkers, G.J., Dalderop, J.H.J., Broeksteeg, M.A.A., Swagten, H.J.M., and Jonge, W.J.M. de, J. Appl. Phys. 86, 5141 (1999).CrossRefGoogle Scholar
18.Dresselhaus, S., Ying, J.Y., and Heremans, I.P., Appl. Phys. Lett. 73, 1589 (1998).Google Scholar
19.Li, Y., Meng, G.W., and Zhang, L.D., Appl. Phys. Lett. 76, 2011 (2000).CrossRefGoogle Scholar
20.Masuda, H. and Fukuda, K., Science 268, 1466 (1995).CrossRefGoogle Scholar
21.Machol, J.L., Wise, F.W., Patel, K.C., Tanner, D.B., Phys. Rew. B-Condens. Matter 48, 2819 (1993).CrossRefGoogle Scholar
22.Guha, S., Leppert, V.J., Risbud, S.H., I. Kang, Solid State Commun. 105, 695 (1998).CrossRefGoogle Scholar
23.Kang, I., and Wise, F.W., J. Opt. Soc. Am. B 14, 1632 (1997).CrossRefGoogle Scholar