Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T18:43:28.141Z Has data issue: false hasContentIssue false

Structural analysis of coexisting tetragonal and rhombohedral phases in polycrystalline Pb(Zr0.35Ti0.65)O3 thin films

Published online by Cambridge University Press:  31 January 2011

Maxim B. Kelman*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Paul C. McIntyre*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Bryan C. Hendrix
Affiliation:
ATMI, Inc., 7 Commerce Drive, Danbury, Connecticut 06810
Steven M. Bilodeau
Affiliation:
ATMI, Inc., 7 Commerce Drive, Danbury, Connecticut 06810
Jeffrey F. Roeder
Affiliation:
ATMI, Inc., 7 Commerce Drive, Danbury, Connecticut 06810
Sean Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, California 94305
*
Get access

Abstract

Structural properties of polycrystalline Pb(Zr0.35Ti0.65)O3 (PZT) thin films grown by metalorganic chemical vapor deposition on Ir bottom electrodes were investigated. Symmetric x-ray diffraction measurements showed that as-deposited 1500 íthick PZT films are partially tetragonal and partially rhombohedral. Cross-section scanning electron microscopy showed that these films have a polycrystalline columnar microstructure with grains extending through the thickness of the film. X-ray depth profiling using the grazing-incidence asymmetric Bragg scattering geometry suggests that each grain has a bilayer structure consisting of a near-surface region in the etragonal phase and the region at the bottom electrode interface in the rhombohedral hase. The required compatibility between the tetragonal and rhombohedral phases in he proposed layered structure of the 1500 Å PZT can explain the peak shifts observed n the symmetric x-ray diffraction results of thicker PZT films.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fox, G.R., Chu, F., and Davenport, T., J. Vac. Sci. Technol. B 19, 1967 (2001).CrossRefGoogle Scholar
2.Summerfelt, S.R., Moise, T.S., Xing, G., Colombo, L., Sakoda, T., Gilbert, , Loke, A.L.S., Ma, S., Wills, L.A., Kavari, R., Hsu, T., Amano, , Johnson, S.T., Vestcyk, D.J., Russell, M.W., Bilodeau, S.M., and Buskirk, P. van, Appl. Phys. Lett. 79, 4004 (2001).CrossRefGoogle Scholar
3.Dimos, D. and Mueller, C.H., Annu. Rev. Mater. Sci. 28, 397 (1998).CrossRefGoogle Scholar
4.Muralt, P., Rep. Prog. Phys. 64, 1339 (2001).CrossRefGoogle Scholar
5.Polla, D.L. and Francis, L.F., Annu. Rev. Mater. Sci. 28, 563 (1998).CrossRefGoogle Scholar
6.Wang, L.P., Deng, K., Zou, L., Wolf, R., Davis, R.J., and Trolier-McKinstry, S., IEEE El. Dev. Lett. 23, 182 (2002).CrossRefGoogle Scholar
7.Shaw, T.M., Trolier-McKinstry, S., McIntyre, P.C., Annu. Rev. Mater. Sci. 30, 263 (2000).CrossRefGoogle Scholar
8.Larsen, P.K., Dormans, G.J.M., Taylor, D.J., and Van Veldhoven, P.J., J. Appl. Phys. 76, 2405 (1994).CrossRefGoogle Scholar
9.Nagarajan, V., Jenkins, I.G., Alpay, S.P., Li, H., Aggarwal, S., Riba, L. Salamanca, Roytburd, A.L., and Ramesh, R., J. Appl. Phys. 86, 595 (1999).CrossRefGoogle Scholar
10.Noheda, B., Cox, D.E., Shirane, G., Gonzalo, J.A., Cross, L.E., and Park, S.E., Appl. Phys. Lett. 74, 2059 (1999).CrossRefGoogle Scholar
11.Guo, R., Cross, L.E., Park, S.E., Noheda, B., Cox, D.E., Shirane, G., Phys. Rev. Lett. 84, 5423 (2000).CrossRefGoogle Scholar
12.Jaffe, B., Cook, W.R., Jr., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, U.K., 1971).Google Scholar
13.Ginzburg, V.L., Physics-Uspekhi. 44, 1037 (2001).CrossRefGoogle Scholar
14.Devonshire, A.F., Philos. Mag. 40, 1040 (1949).CrossRefGoogle Scholar
15.Pertsev, N.A., Zembiglotov, A.G., and Tagantsev, A.K., Phys. Rev. Lett. 80, 1988 (1998).CrossRefGoogle Scholar
16.Oh, S.H. and Jang, H.M., Appl. Phys. Lett. 72, 1457 (1998).CrossRefGoogle Scholar
17.Amin, A., Newnham, R.E., and Cross, L.E., Phys. Rev. B 34, 1595 (1986).CrossRefGoogle Scholar
18.Desu, S.B., Chen, Z.J., Dudkevich, V.P., Dudkevich, P.V., Zakharchenko, I.N., and Kushlyan, G.L., in Ferroelectric Thin Films V, edited by Desu, S.B., Ramesh, R., Tuttle, B.A., Jones, R.E., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 433, Pittsburgh, PA, 1996), pp. 345.Google Scholar
19.Ramer, N.J., Lewis, S.P., Mele, E.J., and Rappe, A.M., AIP Conf. Proc. 436, 156 (1998).CrossRefGoogle Scholar
20.Kelman, M.B., Schloss, L.F., McIntyre, P.C., Hendrix, B.C., Bilodeau, S.M., Roeder, J.F., Appl. Phys. Lett. 80, 1258 (2002).CrossRefGoogle Scholar
21.Marra, W.C., Eisenberger, P., and Cho, A.Y., J. Appl. Phys. 50, 6927 (1979).CrossRefGoogle Scholar
22.Toney, M.F., Huang, T.C., Brennan, S., and Rek, Z., J. Mater. Res. 3, 351 (1988).CrossRefGoogle Scholar
23.Doerner, M.F. and Brennan, S., J. Appl. Phys. 63, 126 (1987).CrossRefGoogle Scholar
24.Brennan, S., Munkholm, A., Leung, O.S., and Nix, W.D., Physica B 283, 125 (2000).CrossRefGoogle Scholar
25.Leung, O.S., Munkholm, A., Brennan, S., and Nix, W.D., J. Appl. Phys. 88, 1389 (2000).CrossRefGoogle Scholar
26.James, R.W., The Optical Principles of the Diffraction of X-rays, 2nd ed. (G. Bell and Sons, London, U.K., 1954).Google Scholar
27.Born, M. and Wolf, E., Principles of Optics (Pergamon Press, New York, 1987).Google Scholar
28.Toney, M.F. and Brennan, S., Phys. Rev. B 39, 7963 (1989).CrossRefGoogle Scholar
29.Roeder, J.F., Baum, T.H., Bilodeau, S.M., Stauf, G.T., Ragaglia, C., Russell, M.W., Buskirk, P.C.V., Adv. Mater. Opt. Electron. 10, 145 (2000).3.0.CO;2-2>CrossRefGoogle Scholar
30.Gruverman, A., Auciello, O., and Tokumoto, H., Ann. Rev. Mater. Sci. 28, 101 (1998).CrossRefGoogle Scholar
31.Aleck, B.J., J. Appl. Mech. 16, 118 (1949).CrossRefGoogle Scholar
32.Blech, I.A. and Levi, A.A., J. Appl. Mech. 48, 442 (1981).CrossRefGoogle Scholar
33.Sauter, A.I. and Nix, W.D., IEEE Trans. Components, Hybrids, Manuf. Technol. 15, 594 (1992).CrossRefGoogle Scholar
34.Sauter, A.I., Ph.D. Thesis, Stanford University, Stanford, CA (1991).Google Scholar