Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T16:53:02.545Z Has data issue: false hasContentIssue false

Structural and dielectric properties of Bi2NbxVi−xO5.5 ceramics

Published online by Cambridge University Press:  31 January 2011

K. B. R. Varma
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
K. V. R. Prasad
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

Bi2Nbx V1−xO5.5 ceramics with x ranging from 0.01 to 0.5 have been prepared. The crystal system transforms from an orthorhombic to tetragonal at x 3= 0.1 and it persists until x = 0.5. Scanning electron microscopic (SEM) investigations carried out on thermally etched Bi2NbxV1−xO5.5 ceramics confirm that the grain size decreases markedly (18 μm to 4 μm) with increasing x. The shift in the Curie temperature (725 K) toward lower temperatures, with increasing x, is established by Differential Scanning Calorimetry (DSC). The dielectric constants as well as the loss tangent (tan δ) decrease with increasing x at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bush, A. A. and Venevtsev, Yu. N., Russ. J. Inorg. Chem. 31 (5), 769 (1986).Google Scholar
2.Osipyan, V. G., Savchenko, L. M., Elbakyan, V. L., and Avakyan, P. B., Inorg. Mater. 23, 467 (1987).Google Scholar
3.Borisov, V. N., Poplavko, Yu. M., Avakyan, P. B., and Osipyan, V. G., Sov. Phys. Solid State 30 (5), 904 (1988).Google Scholar
4.Varma, K. B. R., Subbanna, G. N., Guru Row, T. N., and Rao, C. N. R., J. Mater. Res. 5, 2718 (1990).CrossRefGoogle Scholar
5.Abraham, F., Debreville-Gresse, M. F., Mairesse, G., and Nowogrocki, G., Solid State Ionics 2830, 529 (1988).CrossRefGoogle Scholar
6.Prasad, K. V. R. and Varma, K. B. R., Mater. Chem. Phys. 38, 406 (1994).CrossRefGoogle Scholar
7.Prasad, K. V. R. and Varma, K. B. R., J. Mater. Sci. 30, 6345 (1995).Google Scholar
8.Abraham, F., Boivin, J. C., Mairesse, G., and Nowogrocki, G., Solid State Ionics 4041, 934 (1990).Google Scholar
9.Ihavada, T., Hommouche, A., Fouletier, J., Keitz, M., Boivin, J.C., and Mairesse, G., Solid State Ionics 48, 257 (1991).Google Scholar
10.Sharma, V., Shukla, A. K., and Gopalakrishnan, J., Solid State Ionics 58, 359 (1992).CrossRefGoogle Scholar
11.Goodenough, J. B., Manthiram, A., Paranthanman, M., and Zhen, Y. S., Mater. Sci. Eng. B12, 357 (1992).CrossRefGoogle Scholar
12.Prasad, K. V. R., Subbanna, G. N., and Varma, K. B. R., Ferro-electrics 166, 223 (1995).CrossRefGoogle Scholar
13.Prasad, K. V. R. and Varma, K. B. R., Ferroelectrics 158, 205 (1994).CrossRefGoogle Scholar