Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T15:07:01.714Z Has data issue: false hasContentIssue false

Structural and morphological features of MgO powders. The key role of the preparative starting compound

Published online by Cambridge University Press:  31 January 2011

S. Ardizzone
Affiliation:
Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
C. L. Bianchi
Affiliation:
Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
B. Vercelli
Affiliation:
Department of Physical Chemistry and Electrochemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
Get access

Abstract

The present paper reports data concerning magnesia samples obtained by calcination of different precursor salts at different increasing temperatures (873–1253 K). The oxides are characterized by x- ray diffraction, scanning electron microscopy, and N2 adsorption at subcritical temperatures. The samples appear to be composed, at any temperature, of pure periclase with a degree of crystallinity which increases with the temperature of calcination. Morphologically, the products have the shape either of lamellas or of cubes of variable dimensions, depending on the nature and route of preparation of the precursor salts. The variation of the specific surface area and the degree of porosity with the nature of the precursors and the temperature is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koichi, F., Atsuki, M., and Shinichi, I., Jpn. Kokai Tokkyo Koho JP 07,282,627 [95,282,627], 27 Oct 1995, Appl. 94/65,287,1 Apr 1994; 4 pp.Google Scholar
2.Al-Qahtani, H., Stud. Surf. Sci. Catal. 100, 437446 (1996).CrossRefGoogle Scholar
3.Nakaninishi, N., Seiten, K., Hiroyuki, K., Shunsuke, T., Koji, Y., Yukinori, A., and Toshihiko, S., Jpn. Kokai Tokkyo Koho JP 08 50,899 [96 50,918], 20 Feb 1996, Appl. 94/204,252, 5 Aug 1994; 8 pp.Google Scholar
4.Kiichi, O., Yasuo, S., Kazushi, S., and Shizuyasu, Y., Jpn. Kokai Tokkyo Koho Jp 07,307 159 [95,307,159], 21 Nov 1995, Appl. 93/264,430, 22 Oct 1993; 6 pp.Google Scholar
5.Ito, T. and Lunsford, J. H., Nature (London) 314, 721 (1985).CrossRefGoogle Scholar
6.Kimble, J. B. and Kolts, J. H., Chemtec., (1987) 501.Google Scholar
7.Korf, J. J., Roos, J. A., De Benijn, N. A., Van Ommen, J. G., and Roos, J. R. H., J. Chem. Soc. Chem. Commun., 1433 (1987); Catal. Today 2, 535 (1988).Google Scholar
8.Hinson, P. G., Clearfield, A. C., and Lunsford, J. H., J. Chem. Soc. Chem. Commun., 1430 (1991).Google Scholar
9.Choundhary, V. R., Chaudhari, S. T., and Pandit, M. Y., J. Chem. Soc. Chem. Commun., 501 (1991).Google Scholar
10.Choundhary, V. R., Chaudhari, S. T., Rajaput, A. M., and Rane, V. H., J. Chem. Soc. Chem. Commun., 555 (1989).Google Scholar
11.Shetov, A. A., Muzykantov, V. S., Tlenin, Yu. T., and Kadushin, A. A., Catal. Today 13, 579 (1992).CrossRefGoogle Scholar
12.Hamid, H. B. A. and Myes, R. B., Catal. Today 10, 267 (1991).CrossRefGoogle Scholar
13.Asami, K., Hashimoto, S., Shikad, T., Fujimoto, K., and Tominaga, H., Chem. Lett., 1223 (1986).Google Scholar
14.Choundhary, V. R., Rane, V. H., and Chaudhari, S. T., Catal. Lett. 6, 95 (1990).CrossRefGoogle Scholar
15.Choundhary, V. R., Rajput, A. M., Akolemar, D. B., and Selezev, V. A., Appl. Catal. 62, 171 (1990).CrossRefGoogle Scholar
16.Jones, C. A., Leonard, J. J., and Sofranko, J. J., Energy Fuel 1, 12 (1987).CrossRefGoogle Scholar
17.Fujimoto, K., Hashimoto, S., Asami, K., and Tominaga, H., Chem. Lett., 2157 (1987).CrossRefGoogle Scholar
18.Hargreaves, J. S. J., Hutghings, G. J., Joyner, R. W., and Kiely, C. J., J. Catal. 34, 1 (1992).Google Scholar
19.Hutchings, G. S., Hargreaves, J. S. J., Joyner, R. W., and Kiely, C. J., Chemtec., 25 (1994).Google Scholar
20.Choundhary, V. R., Rane, V. H., and Gadre, R. V., J. Catal. 145 (2), 300 (1994).CrossRefGoogle Scholar
21.Zhen, K., Li, S., Bi, Y., Yang, X., and Wei, Q., Catal. Lett. 23 (3–4), 369 (1994).CrossRefGoogle Scholar
22.Choundhary, V. R., Pataskar, S. G., Suryakant, G., Zope, G. B., and Chaudhary, P. N., J. Chem. Technol. Biotechnol. 64 (4), 407413 (1995).CrossRefGoogle Scholar
23.Wells, A. F., Structural Inorganic Chemistry (Clarendon Press, Oxford).Google Scholar
24.Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures (Wiley, New York, 1962).Google Scholar
25.Pascal, P., Noveau Traitè De Chimie Minèrale, Masson & Cie Èditeurs (Tome IV).Google Scholar
26.Shastry, A. G., Chae, H. B., Bretz, M., and Schwank, J., J. Phys. Chem. 89, 3761 (1985).CrossRefGoogle Scholar