Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T01:19:03.009Z Has data issue: false hasContentIssue false

Structural and optical properties of visible active photocatalytic WO3 thin films prepared by reactive dc magnetron sputtering

Published online by Cambridge University Press:  05 December 2012

Malin B. Johansson*
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
Gunnar A. Niklasson
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
Lars Österlund*
Affiliation:
Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
*
a)Address all correspondence to these authors. e-mail: malin.johansson@angstrom.uu.se
Get access

Abstract

Nanostructured tungsten trioxide films were prepared by reactive dc magnetron sputtering at different working pressures Ptot = 1–4 Pa. The films were characterized by scanning electron microscopy, x-ray diffraction, Rutherford backscattering spectroscopy, Raman spectroscopy, and ultraviolet–visible spectrophotometry. The films were found to exhibit predominantly monoclinic structures and have similar band gap, Eg ≈ 2.8 eV, with a pronounced Urbach tail extending down to 2.5 eV. At low Ptot, strained film structures formed, which were slightly reduced and showed polaron absorption in the near-infrared region. The photodegradation rate of stearic acid was found to correlate with the stoichiometry and polaron absorption. This is explained by a recombination mechanism, whereby photoexcited electron–hole pairs recombine with polaron states in the band gap. The quantum yield decreased by 50% for photon energies close to Eg due to photoexcitations to band gap states lying below the O2affinity level.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
Granqvist, C.G., Azens, A., Heszler, P., Kish, L.B., and Österlund, L.: Nanomaterials for benign indoor environments: Electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning. Sol. Energy Mater. Sol. Cells 91, 355 (2007).CrossRefGoogle Scholar
Tang, J., Zou, Z., and Ye, J.: Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 43, 4463 (2004).CrossRefGoogle ScholarPubMed
Fujishima, A., Zhang, X., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).CrossRefGoogle Scholar
Zheng, H., Ou, J.Z., Strano, M.S., Kaner, R.B., Mitchell, A., and Kalantar-Zadeh, K.: Nanostructured tungsten oxide – properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175 (2011).CrossRefGoogle Scholar
Rampaul, A., Parkin, I.P., O’Neill, S.A., DeSouza, J., Mills, A., and Elliott, N.: Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 22, 35 (2003).CrossRefGoogle Scholar
Li, X.Z., Li, F.B., Yang, C.L., and Ge, W.K.: Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. Photobiol., A 141, 209 (2001).CrossRefGoogle Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
Deb, S.K.: Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27, 801 (1973).CrossRefGoogle Scholar
Granqvist, C.G.: Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).Google Scholar
Granqvist, C.G.: Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells. 60, 201 (2000).CrossRefGoogle Scholar
Smith, G.B. and Granqvist, C.G.: Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment (CRC Press, New York, 2011).Google Scholar
Zhao, J. and Yang, X.: Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ. 38, 645 (2003).CrossRefGoogle Scholar
Shi, H., Huang, X.L., Tian, H., Lv, J., Li, Z., Ye, J., and Zou, Z.: Correlation of crystal structures, electronic structures and photocatalytic properties in W-based oxides. J. Phys. D: Appl. Phys. 42, 1 (2009).CrossRefGoogle Scholar
Wang, H., Xu, P., and Wang, T.: The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO3 thin films. Mater. Des. 23, 331 (2002).CrossRefGoogle Scholar
Abe, R., Takami, H., Murakami, N., and Ohtani, B.: Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780 (2008).CrossRefGoogle ScholarPubMed
Cross, W.B., Parkin, I.P., and O’Neill, S.A.: Tungsten oxide coatings from the aerosol-assisted chemical vapor deposition of W(OAr)6 (Ar = C6H5, C6H4F-4, C6H3F2-3,4); photocatalytically active γ-WO3 films. Chem. Mater. 15, 2786 (2003).CrossRefGoogle Scholar
Waldner, G., Bruger, A., Gaikwad, N.S., and Neumann-Spallart, M.: WO3 thin films for photoelectrochemical purification of water. Chemosphere 67, 779 (2007).CrossRefGoogle ScholarPubMed
Cross, W.B., Parkin, I.P., White, A.J.P., and Williams, D.J.: Synthesis and characterisation of tungsten(VI) oxo-salicylate complexes for use in the chemical vapour deposition of self-cleaning films. Dalton Trans. 1287 (2005).CrossRefGoogle ScholarPubMed
Santato, C., Ulmann, M., and Augustynski, J.: Enhanced visible light conversion efficiency using nanocrystalline WO3 films. Adv. Mater. 13, 511 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
Hagfeldt, A. and Grätzel, M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000).CrossRefGoogle ScholarPubMed
Howard, C., Luca, V., and Knight, K.: High-temperature phase transitions in tungsten trioxide - the last word? J. Phys. Condens. Matter 14, 377 (2002).CrossRefGoogle Scholar
Xu, Y., Carlson, S., and Norrestam, R.: Single crystal diffraction studies of WO3 at high pressures and the structure of a high-pressure WO3 phase. J. Solid State Chem. 132, 123 (1997).CrossRefGoogle Scholar
Woodward, P.M., Sleight, A.W., and Vogt, T.: Ferroelectric tungsten trioxide. J. Solid State Chem. 131, 9 (1997).CrossRefGoogle Scholar
Locherer, K.R., Swainson, I.P., and Salje, E.K.H.: Transition to a new tetragonal phase of WO3: Crystal structure and distortion parameters. J. Phys. Condens. Matter 11, 4143 (1999).CrossRefGoogle Scholar
de Wijs, G.A., de Boer, P.K., and de Groot, R.A.: Anomalous behavior of the semiconducting gap in WO3 from first-principle calculations. Phys. Rev. B 59, 2684 (1999).CrossRefGoogle Scholar
Polaczek, A., Pekala, M., and Obuszko, Z.: Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. J. Phys. Condens. Matter 6, 7909 (1994).CrossRefGoogle Scholar
Aird, A. and Salje, E.K.H.: Sheet superconductivity in twin walls: Experimental evidence of WO3-x. J. Phys. Condens. Matter 10, 377 (1998).CrossRefGoogle Scholar
Salje, E.K.H., Rehmann, S., Pobell, F., Morris, D., Knight, K.S., Herrmannsdoerfer, T., and Dove, M.T.: Crystal structure and paramagnetic behaviour of ε-(WO3-x). J. Phys. Condens. Matter 9, 6563 (1997).CrossRefGoogle Scholar
Salje, E.K.H.: Polarons and pipolarons in tungsten oxide, WO3-x. Eur. J. Solid State Inorg. Chem. 31, 805 (1994).Google Scholar
Bullett, D.W.: A theoretical study of the x-dependence of the conduction band density of states in metallic sodium tungsten bronzes NaxWO3. Solid State Commun. 46, 575 (1983).CrossRefGoogle Scholar
Salje, E.: Structural phase transitions in the system WO3-NaWO3. Ferroelectrics 12, 215 (1976).CrossRefGoogle Scholar
Hjelm, A., Granqvist, C.G., and Wills, J.M.: Electronic structure and optical properties of WO3, LiWO3, NaWO3 and HWO3. Phys. Rev. B 54, 2436 (1996).CrossRefGoogle ScholarPubMed
Chatten, R., Chadwick, A.V., Rougier, A., and Lindan, P.J.D.: The oxygen vacancy in crystal phase of WO3. J. Phys. Chem. B. 109, 3146 (2005).CrossRefGoogle ScholarPubMed
Krishnamachari, B., McLean, J., Cooper, B., and Sethna, J.: Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities. Phys. Rev. B 54, 8899 (1996).CrossRefGoogle ScholarPubMed
McLean, J., Krishnamachari, B., and Peale, D.R.: Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation. Phys. Rev. B 55, 1811 (1997).CrossRefGoogle Scholar
Boulova, M. and Lucazeau, G.: Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J. Solid State Chem. 167, 425 (2002).CrossRefGoogle Scholar
Williamson, G.K. and Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
Roos, A.: Use of an integrating sphere in solar energy research. Sol. Energy Mater. Sol. Cells 30, 77 (1993).CrossRefGoogle Scholar
Swanepoel, R.: Determination thickness optical constants amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214 (1983).CrossRefGoogle Scholar
Hong, W.Q.: Extraction of extinction coefficient of weak absorbing thin films from spectral absorption. J. Phys. D: Appl. Phys. 22, 1384 (1989).CrossRefGoogle Scholar
Paz, Y., Luo, Z., Rabenberg, L., and Heller, A.: Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 10, 2842 (1995).CrossRefGoogle Scholar
Mills, A. and McFarlane, M.: Current and possible future methods of assessing the activities of photocatalyst films. Catal. Today 129, 22 (2007).CrossRefGoogle Scholar
Hagberg, D.P., Jiang, X., Kaufmann, S., Gabrielsson, E., Linder, M., Marinado, T., Brinck, T., Hagfeldt, A., and Sun, L.: Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye -sensitized solar cells. J. Mater. Chem. 19, 7232 (2009).CrossRefGoogle Scholar
Mayer, M.: M. SIMNRA, A Simulation Program for the Analysis of NRA, RBS and ERDA. In the 15th International Conference on the Application of Accelerators in Research and Industry, J.L. Duggan and I.L. Morgan, eds, AIP Conf. Proc. 475, 541 (1999).Google Scholar
Woodward, P.M., Sleight, A.W., and Vogt, T.: Structure refinement of triclinic tungsten trioxide. J. Phys. Chem. Solids 56, 1305 (1995).CrossRefGoogle Scholar
Cazzanelli, E., Vinegoni, C., Mariotto, G., Kuzmin, A., and Purans, J.: Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments. J. Solid State Chem. 143, 24 (1999).CrossRefGoogle Scholar
Souza Filho, A.G., Mendes Filho, J., Freire, V.N., Ayala, A.P., Sasaki, J.M., Freire, P.T.C., Melo, F.E.A., Julião, J.F., and Gomes, U.U.: Phase transition in WO3 microcrystals obtained by sintering process. J. Raman Spectrosc. 32, 695 (2001).CrossRefGoogle Scholar
Daniel, M.F., Desbat, B., Gerand, B., Figlarz, M., and Lassegues, J.C.: Infrared and Raman study of WO3 tungsten trioxides and WO3xH2O tungsten trioxide hydrates. J. Solid State Chem. 67, 235 (1987).CrossRefGoogle Scholar
Souza Filho, A.G., Freire, P.T.C., Pilla, O., Ayala, A.P., Mendes Filho, J., Melo, F.E.A., Freire, V.N., and Lemos, V.: Pressure effects in the Raman spectrum of WO3 microcrystals. Phys. Rev. B 62, 3699 (2000).CrossRefGoogle Scholar
Salje, E.: Lattice dynamics of WO3. Acta Crystallogr., Sect. A 31, 360 (1975).CrossRefGoogle Scholar
Santato, C., Odziemkowski, M., Ulmann, M., and Augustynski, J.: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 (2001).CrossRefGoogle ScholarPubMed
Hayashi, S., Sugano, H., Arai, H., and Yamamoto, K.: Phase transitions in gas-evaporated WO3 microcrystals: A Raman study. J. Phys. Soc. Jpn. 61, 916 (1992).CrossRefGoogle Scholar
Kuzmin, A., Purans, J., Cazzanelli, E., Vinegoni, C., and Mariotto, G.: X-ray diffraction, extended x-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1-x)WO3-yxReO2 mixtures. J. Appl. Phys. 84, 5515 (1998).CrossRefGoogle Scholar
Augustin, I.G. and Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 50, 757 (2001).CrossRefGoogle Scholar
Iguchi, E. and Miyagi, H.: A study on the stability of polarons in monoclinic WO3. J. Phys. Chem. Solids 54, 403 (1993).CrossRefGoogle Scholar
Larsson, A-L., Sernelius, B.E., and Niklasson, G.A.: Optical absorption of Li-intercalated polycrystalline tungsten oxide films: Comparison to large polaron theory. Solid State Ionics 165, 35 (2003).CrossRefGoogle Scholar
Wang, F., Di Valentin, C., and Pacchioni, G.: Semiconductor-to-metal transition in WO3-x: Nature of the oxygen vacancy. Phys. Rev. B 84, 073103 (2011).CrossRefGoogle Scholar
Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C.R., and Collins, R.W.: Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J. Appl. Phys. 92, 2424 (2002).CrossRefGoogle Scholar
Migas, D.B., Shaposhnikov, V.L., Rodin, V.N., and Borisenko, V.E.: Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J. Appl. Phys. 108, 205203 (2010).CrossRefGoogle Scholar
Gillet, M., Aguir, K., Lemire, C., Gillet, E., and Schierbaum, K.: The structure and electrical conductivity of vacuum-annealed WO3 thin films. Thin Solid Films 467, 239 (2004).CrossRefGoogle Scholar