Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T18:08:08.509Z Has data issue: false hasContentIssue false

The structural changes of polycrystalline film C60/C70: Ni caused by Ni diffusion

Published online by Cambridge University Press:  31 January 2011

E. Czerwosz
Affiliation:
Institute of Vacuum Technology, 00-241 Warsaw, Poland
P. Byszewski
Affiliation:
Institute of Vacuum Technology, 00-241 Warsaw, Poland and Institute of Physics, Polish Academy of Sciences, 02-628 Warsaw, Poland
R. Diduszko
Affiliation:
Institute of Vacuum Technology, 00-241 Warsaw, Poland
H. Wronka
Affiliation:
Institute of Vacuum Technology, 00-241 Warsaw, Poland
P. Dluźewski
Affiliation:
Institute of Physics, Polish Academy of Sciences, 02-628 Warsaw, Poland
E. Mizera
Affiliation:
Institute of Physics, Polish Academy of Sciences, 02-628 Warsaw, Poland
Get access

Abstract

C60/C70: Ni films with 1.5 wt. % Ni concentration obtained by vacuum deposition under different thermal conditions have been investigated. The structural changes of the layers were investigated by transmission electron microscopy, electron and x-ray diffraction, and Raman spectroscopy. The polycrystalline structure was detected for the layers grown at approximately 450 K on the substrate. At elevated temperature and maintained temperature gradient on the substrate during the process, the changes of the layer's structure and the formation of Ni microcrystals were observed. The Ni microcrystals (5–10 nm in the diameter) and the elongated shapes dimensioned 10 × 150 nm were perceived.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haddon, R. C., Hebard, A. F., Rosseinsky, M. J., Duclos, S. C., Lyons, K. B., Miller, B., Rosamilia, J.M., Fleming, R. M., Kortan, A. R., Glarum, S. H., Makhija, A. V., Muller, A. J., Eick, R. H., Zaharuk, S. M., Tycko, R., Dabbahg, G., and Thiel, F. A., Nature (London) 350, 320 (1991).CrossRefGoogle Scholar
2.Hebbard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, A. W., Glarum, S. H., Palstra, T. T., Ramirez, A. P., and Kortan, A. R., Nature (London) 350, 600 (1991).CrossRefGoogle Scholar
3.Kortan, A. R., Kopylev, N., Glarum, S. H., Gyorgy, E. M., Ramirez, A. P., Fleming, R. M., Zhou, O., Thiel, F. A., Trevor, P. L., and Haddon, R. C., Nature (London) 352, 230 (1992).Google Scholar
4.Kortan, A. R., Kopylev, N., Glarum, S., Gyorgy, E. M., Ramirez, A. P., Fleming, R. M., Thiel, F. A., and Haddon, R. C., Nature (London) 355, 529 (1992).CrossRefGoogle Scholar
5.Song, L. W., Fredette, K. T., Chung, D. D. L., and Kao, Y. H., Solid State Commun. 87, 387 (1993).CrossRefGoogle Scholar
6.Grigoryan, L. S. and Tokumoto, M., Solid State Commun. 97, 523 (1995).CrossRefGoogle Scholar
7.Song, L. W., Fredette, K. T., Chung, D. D. L., and Kao, Y. H., Solid State Commun. 87, 387 (1993).CrossRefGoogle Scholar
8.Crane, J. D., Hitchcock, P. B., Kroto, H. W., Taylor, R., and Walton, D. R., J. Chem. Soc–Chem. Commun., 1764 (1992).CrossRefGoogle Scholar
9.Biermann, M., Kessler, B., Krummacher, S., and Eberhardt, W., Solid State Commun. 95, 1 (1995).CrossRefGoogle Scholar
10.Byszewski, P., Diduszko, R., and Kowalska, E., in Recent Advances in Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, K. M. and Ruoff, R. M. (The Electrochemical Society, Inc., Pennington, NJ, 1994), Vol. 92–24.Google Scholar
11.Byszewski, P., Diduszko, R., and Baran, M., Acta Phys. Pol. A85, 297 (1994).CrossRefGoogle Scholar
12.Kucharski, Z., Byszewski, P., and Suwalski, J., Mater. Sci. Forum 191, 31 (1995).CrossRefGoogle Scholar
13.Saito, Y., Okuda, M., Fujimoto, N., and Yoshikawa, T., Jpn. J. Appl. Phys. 33, L526 (1994).CrossRefGoogle Scholar
14.Lill, Th., Busmann, H-G., Reif, B., and Hertel, J.V., Surf. Sci. 312, 124 (1994).CrossRefGoogle Scholar
15.Hashizume, T., Motai, K., Wang, X. D., Shinohara, H., Saito, Y., Maruyama, Y., Ohno, K., Kawazoe, Y., Nishina, Y., Pickering, H.W., Kuk, Y., and Sakurai, T., Phys. Rev. Lett. 71, 2959 (1993).CrossRefGoogle Scholar
16.Chen, D. M., Xu, H., Creager, W. N., and Burnett, P., J. Vac. Sci. Technol. B 12, 1910 (1994).CrossRefGoogle Scholar
17.Yanagi, H. and Sasaki, T., Appl. Phys. Lett. 65, 1222 (1994).CrossRefGoogle Scholar
18.Stinchcombe, J., Penicaud, A., Bhyrappa, P., Boyd, P. D. W., and Reed, Ch. A., J. Am. Chem. Soc. 115, 5212 (1993).CrossRefGoogle Scholar
19.Czerwosz, E., Byszewski, P., Dluźewski, P., Wronka, H., Diduszko, R., Radoska, J., and Kozlowski, M., Fizika 4 (1995, in press).Google Scholar
20.Nikiel, L. and Jagodzinski, P. W., Carbon 31, 1313 (1993).CrossRefGoogle Scholar
21.Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O'Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Cuifolina, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 8634 (1990).CrossRefGoogle Scholar
22.Manfredini, M. and Milani, P., Appl. Phys. Lett. 66, 153 (1995).CrossRefGoogle Scholar