Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T18:19:21.017Z Has data issue: false hasContentIssue false

Structural variability of edge dislocations in a SrTiO3 low-angle [001] tilt grain boundary

Published online by Cambridge University Press:  31 January 2011

James P. Buban*
Affiliation:
Department of Molecular and Cellular Biology, University of California−Davis, Davis, California 95616
Miaofang Chi
Affiliation:
Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, California 94550; and Department of Chemical Engineering and Materials Science, University of California−Davis, Davis, California 95616
Daniel J. Masiel
Affiliation:
Department of Chemical Engineering and Materials Science, University of California−Davis, Davis, California 95616
John P. Bradley
Affiliation:
Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, California 94550
Bin Jiang
Affiliation:
FEI Company, Hillsboro, Oregon 97124
Henning Stahlberg
Affiliation:
Department of Molecular and Cellular Biology, University of California−Davis, Davis, California 95616
Nigel D. Browning
Affiliation:
Department of Chemical Engineering and Materials Science, University of California−Davis, Davis, California 95616; and Condensed Matter and Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550
*
a) Address all correspondence to this author. e-mail: jpbuban@ucdavis.edu
Get access

Abstract

Using a spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS), we investigated a 6° low-angle [001] tilt grain boundary in SrTiO3. The enhanced spatial resolution of the aberration corrector leads to the observation of a number of structural variations in the edge dislocations along the grain boundary that neither resemble the standard edge dislocations nor partial dislocations for SrTiO3. Although there appear to be many variants in the structure that can be interpreted as compositional effects, three main classes of core structure are found to be prominent. From EELS analysis, these classifications seem to be related to Sr deficiencies, with the final variety of the cores being consistent with an embedded TiOx rocksalt-like structure.

Type
Outstanding Symposium Papers
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C.C., and McGuire, T.R.: Critical currents in [001] grains and across their tilt boundaries in YBa2Cu3O7 films. Phys. Rev. Lett. 61, 2476 (1988).CrossRefGoogle Scholar
2Dimos, D., Chaudhari, P., and Mannhart, J.: Superconducting transport-properties of grain-boundaries in YBa3Cu3O7 bicrystal. Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3Mathur, N.D., Burnell, G., Isaac, S.P., Jackson, T.J., Teo, B.S., MacManus-Driscoll, J.L., Cohen, L.F., Evetts, J.E., and Blamire, M.G.: Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature 387, 266 (1997).CrossRefGoogle Scholar
4Zhang, N., Ding, W.P., Zhong, W., Xing, D.Y., and Du, Y.W.: Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Phys. Rev. B: Condens. Matter 56, 8138 (1997).CrossRefGoogle Scholar
5Heywang, W.: Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc. 47, 484 (1964).CrossRefGoogle Scholar
6Klie, R.F., Buban, J.P., Varela, M., Franceschetti, A., Jooss, C., Zhu, Y., Browning, N.D., Pantelides, S.T., and Pennycook, S.J.: Enhanced current transport at grain boundaries in high-TC superconductors. Nature 435, 475 (2005).CrossRefGoogle Scholar
7Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., and Ikuhara, Y.: Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006).CrossRefGoogle ScholarPubMed
8Sato, Y., Buban, J.P., Mizoguchi, T., Shibata, N., Yodogawa, M., Yamamoto, T., and Ikuhara, Y.: Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. Phys. Rev. Lett. 97, 106802 (2006).CrossRefGoogle ScholarPubMed
9Kim, M., Duscher, G., Browning, N.D., Sohlberg, K., Pantelides, S.T., and Pennycook, S.J.: Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3. Phys. Rev. Lett. 86, 4056 (2001).CrossRefGoogle ScholarPubMed
10Mo, S.D., Ching, W.Y., Chisholm, M.F., and Duscher, G.: Electronic structure of a grain-boundary model in SrTiO3. Phys. Rev. B: Condens. Matter 60, 2416 (1999).CrossRefGoogle Scholar
11McGibbon, M.M., Browning, N.D., Chisholm, M.F., Mcgibbon, A.J., Pennycook, S.J., Ravikumar, V., and Dravid, V.P.: Direct determination of grain-boundary atomic-structure in SrTiO3. Science 266, 102 (1994).CrossRefGoogle ScholarPubMed
12Ravikumar, V., Rodrigues, R.P., and Dravid, V.P.: An investigation of acceptor-doped grain boundaries in SrTiO3. J. Phys. D: Appl. Phys. 29, 1799 (1996).CrossRefGoogle Scholar
13Rodrigues, R.P., Chang, H.J., Ellis, D.E., and Dravid, V.P.: Electronic structure of pristine and solute-incorporated SrTiO3: II, Grain-boundary geometry and acceptor doping. J. Am. Ceram. Soc. 82, 2385 (1999).CrossRefGoogle Scholar
14Browning, N.D. and Pennycook, S.J.: Direct experimental determination of the atomic structure at internal interfaces. J. Phys. D: Appl. Phys. 29, 1779 (1996).CrossRefGoogle Scholar
15Duscher, G., Buban, J.P., Browning, N.D., Chisholm, M.F., and Pennycook, S.J.: The electronic structure of pristine and doped (100) tilt grain boundaries in SrTiO3. Interface Sci. 8, 199 (2000).CrossRefGoogle Scholar
16Klie, R.F. and Browning, N.D.: Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl. Phys. Lett. 77, 3737 (2000).CrossRefGoogle Scholar
17Zhang, Z.L., Sigle, W., Kurtz, W., and Ruhle, M.: Electronic and atomic structure of a dissociated dislocation in SrTiO3. Phys. Rev. B: Condens. Matter 66, 094108 (2002).CrossRefGoogle Scholar
18Zhang, Z.L., Sigle, W., and Ruhle, M.: Atomic and electronic characterization of the a[100] dislocation core in SrTiO3. Phys. Rev. B: Condens. Matter 66, 094108 (2002).CrossRefGoogle Scholar
19Astala, R. and Bristowe, P.D.: First-principles calculations of an oxygen deficient Sigma=3 (111) [101] grain boundary in strontium titanate. J. Phys. Condens. Matter 14, 6455 (2002).CrossRefGoogle Scholar
20Klie, R.F., Beleggia, M., Zhu, Y., Buban, J.P., and Browning, N.D.: Atomic-scale model of the grain boundary potential in perovskite oxides. Phys. Rev. B: Condens. Matter 68, 214101 (2003).CrossRefGoogle Scholar
21Choi, S.Y., Buban, J.P., Nishi, M., Kageyama, H., Shibata, N., Yamamoto, T., S.Kang, J.L., and Ikuhara, Y.: Dislocation structures of low-angle boundaries in Nb-doped SrTiO3 bicrystals. J. Mater. Sci. 41, 2621 (2006).Google Scholar
22Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J., and Pennycook, S.J.: Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004).CrossRefGoogle ScholarPubMed
23Sutton, A.P. and Ballurri, R.W.: Interfaces in Crystalline Materials (Claredon Press, Oxford, 1995).Google Scholar
24Buban, J.P., Iddir, H., and Ogut, S.: Structural and electronic properties of oxygen vacancies in cubic and antiferrodistortive phases of SrTiO3. Phys. Rev. B: Condens. Matter 69, 180102 (2004).CrossRefGoogle Scholar
25Sankaraman, M. and Perry, D.: Valence determination of titanium and iron using electron-energy loss spectroscopy. J. Mater. Sci. 27, 2731 (1992).CrossRefGoogle Scholar
26Mizoguchi, T., Sato, Y., Buban, J.P., Matsunaga, K., Yamamoto, T., and Ikuhara, Y.: Sr vacancy segregation by heat treatment at SrTiO3 grain boundary. Appl. Phys. Lett. 87, 241920 (2005).CrossRefGoogle Scholar
27De, F.M.F. Groot, Faber, J., Michiels, J.J.M., Czyzyk, M.T., Abbate, M., and Fuggle, J.C.: Oxygen 1s x-ray-absorption of tetravalent titanium-oxides–A comparison with single-particle calculations. Phys. Rev. B: Condens. Matter 48, 2074 (1993).Google Scholar
28Brydson, R., Sauer, H., Engel, W., and Hofer, F.: Electron energyloss near-edge structures at the oxygen K-edges of titanium(IV) oxygen compounds. J. Phys. Condens. Matter 4, 3429 (1992).CrossRefGoogle Scholar
29Tanaka, I., Nakajima, T., Kawai, J., Adachi, H., Gu, H., and Ruhle, M.: Dopant-modified local chemical bonding at a grain boundary in SrTiO3. Philos. Mag. Lett. 75, 21 (1997).CrossRefGoogle Scholar
30Mitterbauer, C.: Thesis, Graz University of Technology (2003).Google Scholar