Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T22:11:56.340Z Has data issue: false hasContentIssue false

Structurally-induced elastic anomalies in a superlattice of (001) twist grain boundaries

Published online by Cambridge University Press:  31 January 2011

D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. F. Lutsko
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

It is suggested that the “supermodulus effect” observed for composition-modulated strained-layer superlattices may arise from the presence of the structurally disordered solid interfaces and not necessarily from electronic-structure effects. The latter are excluded by investigating the elastic properties of a so-called grain-boundary superlattice in which chemically identical materials are joined to form a three-dimensional superlattice. Both an embedded-atom-method and Lennard-Jones potential are employed in our zero-temperature atomistic calculations of the elastic constants and moduli of such a superlattice. They yield qualitatively similar results which, for large modulation wavelengths, can be represented by a mean-field model in which the interfacial regions are characterized by a set of effective elastic constants which are different from those of the bulk regions. The appearance of a maximum in the biaxial modulus and a minimum in the shear modulus is shown to arise from the interaction between interfaces. It is also shown that such extreme anomalies appear only in the moduli but not in the elastic constants of the grain-boundary superlattice.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yang, W. M. C.Tsakalakos, T. and Hilliard, J. E.J. of Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
2Schuller, I. K. in The Institute of Electrical and Electronics Engineers Ultrasonics Symposium, 1985, edited by McAvoy, B.R. (IEEE, New York, 1985), p. 1093.Google Scholar
3Grimsditch, M. to be published in Light Scattering in Solids V, edited by Cardona, M. and Guntherodt, G. (Springer, Heidelberg).Google Scholar
4Clemens, B.M. and Eesley, G.L.Phys. Rev. Lett. 61, 2356 (1988).CrossRefGoogle Scholar
5Baral, D.Ketterson, J.B. and Hilliard, J.E.J. of Appl. Phys. 57, 1076 (1985).Google Scholar
6Henein, G. E. and Hilliard, J. E.J. of Appl. Phys. 54, 728 (1983).Google Scholar
7Tsakalakos, T. and Hilliard, J. E.J. of Appl. Phys. 54 734 (1983).CrossRefGoogle Scholar
8Huberman, M. L. and Grimsditch, M.Phys. Rev. Lett. 62, 1403 (1989).CrossRefGoogle Scholar
9Schuller, I.K. and Rahman, A.Phys. Rev. Lett. 50, 1377 (1983).CrossRefGoogle Scholar
10Wu, T.B.J. Appl. Phys. 53, 5265 (1982).Google Scholar
11Bennett, W. R.Leavitt, J. A. and Falco, C. M.Phys. Rev. B35, 4199 (1987).Google Scholar
12Korn, D.Morsch, A.Birringer, R.Arnold, W. and Gleiter, H.J. de Physique Colloque C5 40, C5769 (1988).Google Scholar
13Goux, C.Can. Metall. Quart. 13, 9 (1974).CrossRefGoogle Scholar
14Banerjea, A. and Smith, J.R.Phys. Rev. B35, 5413 (1987).Google Scholar
15Jankowski, A. I. and Tsakalakos, T.J. Phys. F15, 1279 (1985).Google Scholar
16Jankowski, A.I.J. Phys. F18, 413 (1988).Google Scholar
17Dodson, B.W.Phys. Rev. B37, 727 (1988).Google Scholar
18Imafuku, M.Sasajima, Y.Yamamoto, R. and Doyama, M.J. Phys. F16, 823 (1986).Google Scholar
19Daw, M. S. and Baskes, M. I.Phys. Rev. B29, 6443 (1984) and ibid. 33, 7983 (1986).Google Scholar
20Wolf, D. and Lutsko, J.F.Phys. Rev. Lett. 60, 1170 (1988).Google Scholar
21Wolf, D. and Lutsko, J. F.J. Appl. Phys. 66, 1961 (1989).CrossRefGoogle Scholar
22Bristowe, P.D. and Balluffi, R.W.J. Phys. Colloque C4 46, C4155 (1985).Google Scholar
23Wolf, D.Acta Metall. 32, 245 (1984) and ibid. 735 (1984).Google Scholar
24Wolf, D.J. de Physique Colloque C4 46, C4197 (1985).Google Scholar
25Wolf, D.Acta Metall. 37, 1983 (1989).Google Scholar
26Wolf, D.J. Am. Ceram. Soc. 67, 1 (1984).CrossRefGoogle Scholar
27Born, M. and Huang, K.Dynamical Theory of Crystal Lattices (Oxford Clarendon Press, London, 1954).Google Scholar
28Ray, J. and Rahman, A.J. Chem. Phys. 80, 4423 (1984), and Phys. Rev. B 32, 733 (1985).CrossRefGoogle Scholar
29Ray, J.private communication, and J. Ray Computer Physics Report 8, 111 (1988).Google Scholar
30Lutsko, J. F.J. Appl. Phys. 65, 2991 (1989).CrossRefGoogle Scholar
31Finnis, M.W. and Sinclair, J.E.Phil. Mag. A50, 45 (1984).Google Scholar
32Wolf, D.Phil. Mag. B59, 667 (1989).Google Scholar
33Wolf, D.Lutsko, J. F. and Kluge, M. to be published in the Proceedings of the Symposium on “Atomistic Modelling in Materials – Beyond Pair Potentials”, Chicago, September 1988 (Plenum Press, 1989).Google Scholar
34Wolf, D. and Phillpot, S. R.Mater. Sci. Engr. A107, 3 (1989).Google Scholar
35Frost, H.J.Ashby, M.F. and Spaepen, F.Scripta Metall. 14, 1051 (1980).CrossRefGoogle Scholar
36Seeger, A. and Schottky, G.Acta Metall. 7, 495 (1959).CrossRefGoogle Scholar
37Wolf, D. and Lutsko, J. F. Scripta Metall. (to be published).Google Scholar
38Jankowski, A. and Tsakalakos, T.J. Appl. Phys. 57, 1835 (1985).CrossRefGoogle Scholar
39Read, W.T. and Shockley, W.Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
40Cammarata, R. C. and Sieradzki, K.Phys. Rev. Lett. 62, 2005 (1989).CrossRefGoogle Scholar
41Grimsditch, M. and Nizzoli, F.Phys. Rev. B33, 5891 (1986).Google Scholar