Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T22:27:18.712Z Has data issue: false hasContentIssue false

Structure and bonding studies of the C:N thin films produced by rf sputtering method

Published online by Cambridge University Press:  31 January 2011

C. J. Torng
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
J. M. Sivertsen
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
J. H. Judy
Affiliation:
Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
C. Chang
Affiliation:
Information Magnetic Corporation, 9177 Sky Park Court, San Diego, California 92123
Get access

Abstract

Thin C:N films were prepared by rf diode sputtering of a graphite target in a mixed argon/nitrogen plasma. We have observed a systematic variation of the properties of these C:N films with an increase in the nitrogen partial pressure. XPS, AES, and TEM studies show that nitrogen will stabilize the diamond sp3 bonding. From XPS studies, we found that the density of our C:N films is increased from 1.37 × 1023 atoms/cm3 to 1.63 × 1023 atoms/cm3 using a 100% nitrogen plasma. The energy gap of our nitrogen carbon also shows an increase from 1.1 eV to 1.4 eV using a 100% nitrogen plasma. The mechanical properties also are shown to be enhanced for certain applications. By using the same method, we can also show that it can produce 100% amorphous C:N films which are more diamond-like as compared with other methods.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Khan, A. A. and Woollam, J. A., J. Appl. Phys. 55, 4299 (1984).CrossRefGoogle Scholar
2Andersson, L.P., Thin Solid Films 86, 193 (1981).CrossRefGoogle Scholar
3Spencer, E. G., Schmit, P. N., Joy, D. J., and Sansalone, F. J., Appl. Phys. Lett. 29, 228 (1976).CrossRefGoogle Scholar
4Mirtich, M. J., Swec, D. M., and Angus, J. C., Thin Solid Films 131, 245 (1985).CrossRefGoogle Scholar
5Weissmantel, C., Reisse, G., Erler, H-J., Henny, F., Bewilogua, K., Ebersbach, U., and Schwer, C., Thin Solid Films 63, 315 (1979).CrossRefGoogle Scholar
6Banks, B. A. and Rutledge, S., J. Vac. Sci. Technol. 21, 807 (1982).CrossRefGoogle Scholar
7Somolowski, M., Somolosska, A., Gomeili, B., Michalski, A., Rusem, A., and Rmanowski, Z., J. Cryst. Growth 47, 421 (1979).CrossRefGoogle Scholar
8Enke, K., Thin Solid Films 80, 227 (1981).CrossRefGoogle Scholar
9Holland, L. and Ojaha, S. M., Thin Solid Films 58, 107 (1979).CrossRefGoogle Scholar
10Anderson, L.P., Berg, S., Norstom, H., Olaison, R., and Tonia, S., Thin Solid Films 63, 155 (1979).CrossRefGoogle Scholar
11Berg, S. and Anderson, L. P., Thin Solid Films 58, 117 (1979).CrossRefGoogle Scholar
12Whitemell, D. S. and Williamson, R., Thin Solid Films 35, 225 (1976).Google Scholar
13Myerson, B. and Smith, F.W., Solid State Commun. 34, 531 (1980).CrossRefGoogle Scholar
14Myerson, B. and Smith, F.W., J. Non-Cryst. Solids 35, 435 (1980).CrossRefGoogle Scholar
15Fujimori, S. and Nagai, K., Jpn. J. Appl. Phys. 20, L194 (1981).CrossRefGoogle Scholar
16Torng, C. J., Sivertsen, J. M., and Judy, J. H., in Perpendicular Magnetic Recording Proceeding, Japan, p. 169 (1989).Google Scholar
17Torng, C. J., Yeh, T., Sivertsen, J. M., and Judy, J. H., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R. F., and Fijimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).Google Scholar
18Miyazawa, T., Misawa, S., Yoshida, S., and Gonda, S-I., J. Appl. Phys. 55, 188 (1984).CrossRefGoogle Scholar
19Hauser, J., J. Non-Cryst. Solids 23, 21 (1977).CrossRefGoogle Scholar
20Wada, N., Gaczi, P. J., and Solin, S. A., J. Non-Cryst. Solids 35, 543 (1980).CrossRefGoogle Scholar
21Morgan, M., Thin Solid Films 7, 313 (1971).CrossRefGoogle Scholar
22Yeh, T., Chang, C., Sivertsen, J. M., and Judy, J. H., in Perpendicular Magnetic Recording Proceeding, Japan, p. 163 (1989).Google Scholar
23Robertson, J., Advances in Physics 35, 317 (1986).CrossRefGoogle Scholar
24Lune, P. G. and Wilson, J. M., Surf. Sci. 65, 476 (1977).Google Scholar
25McFeely, F. R., Kowalczyk, S. P., Ley, L., Cavell, R. G., Pollak, R. A., and Shirely, D. A., Phys. Rev. B 9, 5268 (1974).CrossRefGoogle Scholar
24Tsai, Hsias-chu and Bogy, D. B., J. Vac. Sci. Technol. A5 (6), 3287 (1987).CrossRefGoogle Scholar
27Williams, B. E. and Glass, J.T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
28Kasi, S. R., Kang, H., and Rabalais, J.W., J. Vac. Sci. Technol. A6 (3), 1788 (1988).CrossRefGoogle Scholar
29Moraver, T. J. and Orent, T.W., J. Vac. Sci. Technol. 18 (2), 226 (1981).CrossRefGoogle Scholar
30Kasi, S. R., Kang, H., and Rabalais, J.W., J. Chem. Phys. 88 (9), 5914 (1988).CrossRefGoogle Scholar
31Mori, T. and Namba, Y., J. Appl. Phys. 55, 3276 (1984).CrossRefGoogle Scholar
32Mott, N.F., Conduction in Non-Crystalline Materials (Clarendon, Oxford, 1987), p. 88.Google Scholar