Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T22:25:40.391Z Has data issue: false hasContentIssue false

Structure of Au ultrafine particles in silica glass by x-ray absorption fine structure spectroscopy

Published online by Cambridge University Press:  03 March 2011

Kohei Fukumi
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Hiroyuki Kageyama
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Kohei Kadono
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Akiyoshi Chayahara
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Nagao Kamijo
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Masaki Makihara
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Kanenaga Fujii
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Junji Hayakawa
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Mamoru Satou
Affiliation:
Osaka National Research Institute, AIST, 1-8-31, Midorigaoka, Ikeda, Osaka, 563 Japan
Get access

Abstract

The structure of ultrafine gold particles embedded in silica glass by ion implantation has been studied by x-ray absorption fine structure spectroscopy. It is found that the Au–Au interatomic distance in the particles is very similar to that in bulk gold within 0.01 Å. Mean-square relative displacement in the particles is 1.2–1.3 times larger than that in bulk gold.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jain, R. K. and Rind, R. C., J. Opt. SOC. Am. 73, 647 (1983).Google Scholar
2Hache, F., Ricard, D., Flytzanis, C., and Kreibig, U., Appl. Phys. A47, 347 (1988).Google Scholar
3Harada, J. and Ohshima, K., Surf. Sci. 106, 51 (1981).CrossRefGoogle Scholar
4Solliard, C., Solid State Commun. 51, 947 (1984).CrossRefGoogle Scholar
5Balerna, A., Bornieri, E., Pocizzi, P., Reale, A., Santucci, S., Burattini, E., and Mobilio, S., Phys. Rev. B 31, 5058 (1985).Google Scholar
6Balerna, A. and Mobilio, S., Phys. Rev. B 34, 2293 (1986).CrossRefGoogle Scholar
7Kreibig, U., Z. Phys. B31, 39 (1978).Google Scholar
8Fukumi, K., Chayahara, A., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., Appl. Phys. Lett. 64, 3410 (1994).CrossRefGoogle Scholar
9Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J., and Satou, M., J. Appl. Phys. 75, 3075 (1994).CrossRefGoogle Scholar
10Hastings, J. B., in EXAFS Spectroscopy Techniques and Applications, edited by Lee, B. K. and Joy, D. C. (Plenum Press, New York, 1981), Chap. 12, p. 171.Google Scholar
11Tröer, L., Arvanitis, D., Baberschke, K., Michaelis, H., Grimm, U., and Zschech, E., Phys. Rev. B 46, 3283 (1992).Google Scholar
12Theisen, R. and Vollath, D., in Tables ofX-ruy Muss Attenuation CoefJicients (Verlang Stahleisen mbH, Diisseldorf, 1967).Google Scholar
13Maeda, H., J. Phys. SOC. Jpn. 56, 2277 (1987).Google Scholar
14A.D. McKale, Veal, B. W., Paulikas, A. P., Chan, S-K., and Knapp, G. S., J. Am. Chem. SOC. 251, 3763 (1988).Google Scholar
15Greaves, G. N., Durham, P. J., Diakun, G., and Quinn, P., Nature 294, 140 (1981).CrossRefGoogle Scholar