Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:14:00.526Z Has data issue: false hasContentIssue false

Structure of grain boundaries: Correlation to supercurrent transport in textured Bi2Sr2Can−1CunOx bulk material

Published online by Cambridge University Press:  31 January 2011

Y. Yan
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
M. A. Kirk
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. E. Evetts
Affiliation:
IRC in Superconductivity, Cambridge University, Madingley Road, Cambridge CB3 0HE, United Kingdom
Get access

Abstract

Two kinds of characteristic grain boundaries were observed in textured Bi2Sr2Can−1CunOx (n = 2 and 3) bulk material: one (P-type) is nearly parallel to the (001) plane, and the other (N-type) is approximately normal to the (001) plane. Low-angle tilt N-type boundaries are composed of arrays of dislocations. However, for a small c-axis misorientation, the regions between the dislocation cores are still well connected, providing “pathways” for supercurrents crossing the boundary plane. The P-type boundaries exhibit compositionally and structurally modulated faceting. Although we see local regions of the low Tc (2201) phase at low-angle tilt (<10°) P-type boundaries, there are also “pathways” crossing the boundary plane made up of the high Tc (2212) and (2223) phases. The characteristics of such low-angle tilt grain boundary structures can therefore be modeled to provide general insight into the correlation between high critical current densities and low-texture breadths. On the other hand, a weak link could be formed at high-angle (> 10°) boundaries where there are the low Tc (2201) or insulating phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheurmamm, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
2.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3.Heine, K., Tenbrik, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
4.Thoner, M., Heine, K., and Tenbrik, J., Cryogenics 30, 423 (1990).Google Scholar
5.Uno, N., Enomoto, N., Kikuchi, H., Matsumoto, K., Mimura, M., and Nakaijima, M., Adv. Supercon. 2, Proc. Int. Symp. Supercon. 2nd, 341 (1991).Google Scholar
6.Sato, K., Hikatai, T., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Nagata, M., Iwata, I., and Mitsui, T., IEEE Trans. Magn. 27, 1231 (1990).CrossRefGoogle Scholar
7.Flükiger, R., Graf, T., Decroux, M., and Yamada, Y., IEEE Trans. Magn. 27, 1258 (1990).CrossRefGoogle Scholar
8.Nomura, S. and Chiang, Y. M., Appl. Phys. Lett. 58, 768 (1991).CrossRefGoogle Scholar
9.Enomoto, N., Kikuchi, H., Uno, N., Kumakura, H., Togano, K., and Watanabe, N., Jpn. J. Appl. Phys. 29, L447 (1990).CrossRefGoogle Scholar
10.Eibl, O., Physica C 168, 239 (1990).CrossRefGoogle Scholar
11.Eibl, O., Physica C 168, 215 (1990).CrossRefGoogle Scholar
12.Yan, Y., Evetts, J. E., Soylu, B., and Stobbs, W. M., in Proc. 13th Int. Congress on Electron Microscopy, edited by Jouffrey, B. and Colliex, C. (Les Editions de Physiue Les Ulis, France, 1994), Vol. 2, p. 967.Google Scholar
13.Hellstrom, E. E., MRS Bulletin XVII, 45 (1992).CrossRefGoogle Scholar
14.Horiuchi, S., Shoda, K., Wu, X., Nozaki, H., and Tsutsumi, M., Physica C 168, 203 (1990).Google Scholar
15.Ramesh, R., Bagley, B. G., Tarascon, J. M., Green, S. M., Rudee, S. M., and Luo, H. L., J. Appl. Phys. 67, 379 (1990).CrossRefGoogle Scholar
16.Yan, Y., Evetts, J. E., Soylu, B., and Stobbs, W. M., Philos. Mag. Lett. 70, 195 (1994).CrossRefGoogle Scholar
17.Yan, Y., Lo, W., Evetts, J. E., Campbell, A. M., and Stobbs, W. M., Appl. Phys. Lett. 67, 2554 (1995).CrossRefGoogle Scholar
18.Yan, Y., Evetts, J. E., Soylu, B., and Stobbs, W. M., Physica C 261, 56 (1996).CrossRefGoogle Scholar
19.Soylu, B., Adamopoulos, N., Glowacka, D. M., and Evetts, J. E., Appl. Phys. Lett. 60, 3183 (1992).CrossRefGoogle Scholar
20.Lo, W., Zheng, D. N., Glowacki, B. A., and Campbell, A. M., J. Mater. Sci. 29, 3897 (1994).CrossRefGoogle Scholar
21.Akimitsu, J., Yamazaki, A., Sawa, H., and Fujiki, H., Jpn. J. Appl. Phys. 26, L2080 (1987).CrossRefGoogle Scholar
22.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
23.Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B68, 421 (1987).CrossRefGoogle Scholar
24.Wolf, D., in Materials Interfaces: Atomic-Level Structure and Properties edited by Wolf, D. and Yip, S., (Chapman and Hall, 1992) p. 35.Google Scholar
25.Wolf, D. and Merkle, K. L., in “Materials interfaces: atomic-level structure & properties” edited by Wolf, D. and Yip, S., (Chapman and Hall, London, 1992), p. 87.Google Scholar
26.Brandon, D. G., Ralph, B., Ranganathan, S., and Wald, M. S., Acta Metall. 12, 813 (1964).CrossRefGoogle Scholar
27.Chalmers, B. and Gleiter, H., Philos. Mag. 23, 1541 (1971).CrossRefGoogle Scholar
28.Goux, C., Can. Metal. Quart. 13, 9 (1974).CrossRefGoogle Scholar
29.Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, New York, 1970).CrossRefGoogle Scholar
30.Soylu, B., Adamopoulos, N., Chen, M., Yan, Y., and Evetts, J. E., Applied Superconductivity 1993 edited by Freyhardt, H. C. (Informationgesellschaft Verlag, 1993), Vol. 1, p. 720.Google Scholar
31.Stadelmann, P. A. and Buffat, P. A., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
32.Chan, S. W., J. Phys. Chem. Solids 55, 1415 (1994).CrossRefGoogle Scholar
33.Smith, D. A. and Chisholm, M., Philos. Mag. A59, 181 (1989).Google Scholar
34.Budin, H., Eibl, O., Pongratz, P., and Skalicky, P., Physica C 207, 1993) p. 208.CrossRefGoogle Scholar
35.Latyshev, Y. I. and Nevelskaya, J. E., 7th Int. Workshop on Critical Currents in Superconductor, edited by Weker, H. W. (World Scientific, Singapore, 1994) p. 284.Google Scholar
36.Chen, M., Glowacka, D. M., Soylu, B., Watson, D. R., Christiansen, J. K. S., Baranowski, R. P., Glowacki, B. A., and Evetts, J. E., IEEE Trans. Appl. Supercon. 5, 801 (1995).CrossRefGoogle Scholar
37.Feng, Y., Larbalestier, D. C., Babcock, S. E., and Sande, J. B. Vander, Appl. Phys. Lett. 61, 1234 (1992).CrossRefGoogle Scholar
38.Feng, Y., Hautance, K., High, Y. E., Larbalestier, D. C., Ray, R., Hellstrom, E. E., and Babcock, S. E., Physica C 192, 293 (1992).CrossRefGoogle Scholar
39.Bulaevskii, L. N., Clem, J. R., Glazman, L. I., and Malozemoff, A. P., Phys. Rev. B 45, 2545 (1992).CrossRefGoogle Scholar
40.Merkle, K., Buckett, M. I., Gao, Y., Rozeveld, S. J., Vuchic, B. L., and Wolf, D., IUMRS-93, Symp. AA (1993).Google Scholar
41.Adamopoulos, N., Soylu, B., Yan, Y., and Evetts, J. E., Physica C 242, 68 (1995).CrossRefGoogle Scholar
42.Adamopoulos, N. and Evetts, J. E., IEEE Trans. Appl. Supercon. 3, 1257 (1993).CrossRefGoogle Scholar