Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T05:41:42.445Z Has data issue: false hasContentIssue false

Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment

Published online by Cambridge University Press:  20 July 2020

P.J. Lloreda-Jurado
Affiliation:
Department of Materials Engineering and Science, E.T.S. de Ingenieros, Universidad de Sevilla, Sevilla41092, Spain Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, USA
S.K. Wilke
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, USA
K. Scotti
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, USA
A. Paúl-Escolano
Affiliation:
Department of Materials Engineering and Science, E.T.S. de Ingenieros, Universidad de Sevilla, Sevilla41092, Spain
D.C. Dunand
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, USA
R. Sepúlveda*
Affiliation:
Department of Materials Engineering and Science, E.T.S. de Ingenieros, Universidad de Sevilla, Sevilla41092, Spain
*
a)Address all correspondence to this author. e-mail: rsepulveda@us.es
Get access

Abstract

Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure suffers morphological changes and a decrease in the effective porosity. In this work, two different pore structures of Fe-foams fabricated by freeze-casting have been produced: constant (CP) and gradient (GP) pore size. CP Fe-foams were obtained by employing a double-sided cooling technique to minimize gradients in pore width that result when using one-sided, constant cooling solidification techniques. GP Fe-foams were manufactured using a fixed-temperature cold plate. Optical microscopy and X-ray tomography were employed to characterize the pore structure and, for GP Fe-foams, to investigate the effect of redox cycling. After redox cycling, GP Fe-foams exhibited significant pore degradation.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, W.L., Lu, K., and Walz, J.Y.: Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 57, 37 (2012).10.1179/1743280411Y.0000000011CrossRefGoogle Scholar
Miller, S.M., Xiao, X., and Faber, K.T.: Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. J. Eur. Ceram. Soc. 35, 3595 (2015).10.1016/j.jeurceramsoc.2015.05.012CrossRefGoogle Scholar
Scotti, K.L. and Dunand, D.C.: Freeze casting – A review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci. 94, 243 (2018).10.1016/j.pmatsci.2018.01.001CrossRefGoogle Scholar
Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., and Goto, Y.: Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. J. Mater. Sci. 36, 2523 (2001).10.1023/A:1017946518955CrossRefGoogle Scholar
Rozmanov, D. and Kusalik, P.G.: Anisotropy in the crystal growth of hexagonal ice, I h. J. Chem. Phys. 137, 094702 (2012).10.1063/1.4748377CrossRefGoogle ScholarPubMed
Araki, K. and Halloran, J.W.J.W.: New freeze-casting technique for ceramics with sublimable vehicles. J. Am. Ceram. Soc. 87, 1859 (2004).10.1111/j.1151-2916.2004.tb06331.xCrossRefGoogle Scholar
Stull, D.R.: Vapor pressure of pure substances: Organic and inorganic compounds. Ind. Eng. Chem. 39, 517 (1947).10.1021/ie50448a022CrossRefGoogle Scholar
Sepúlveda, R., Plunk, A.A., and Dunand, D.C.: Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Mater. Lett. 142, 56 (2015).10.1016/j.matlet.2014.11.155CrossRefGoogle Scholar
Chino, Y. and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).10.1016/j.actamat.2007.09.002CrossRefGoogle Scholar
Zhang, H., D'Angelo Nunes, P., Wilhelm, M., and Rezwan, K.: Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. J. Eur. Ceram. Soc. 36, 51 (2016).10.1016/j.jeurceramsoc.2015.09.018CrossRefGoogle Scholar
Pekor, C.M., Kisa, P., and Nettleship, I.: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91, 3185 (2008).10.1111/j.1551-2916.2008.02616.xCrossRefGoogle Scholar
Waschkies, T., Oberacker, R., and Hoffmann, M.J.: Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater. 59, 5135 (2011).10.1016/j.actamat.2011.04.046CrossRefGoogle Scholar
Preiss, A., Su, B., Collins, S., and Simpson, D.: Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. J. Eur. Ceram. Soc. 32, 1575 (2012).10.1016/j.jeurceramsoc.2011.12.031CrossRefGoogle Scholar
Stolze, C., Janoschka, T., Schubert, U.S., Müller, F.A., and Flauder, S.: Directional solidification with constant ice front velocity in the ice-templating process. Adv. Eng. Mater. 18, 111 (2016).10.1002/adem.201500235CrossRefGoogle Scholar
Durán, P., Lachén, J., Plou, J., Sepúlveda, R., Herguido, J., and Peña, J.A.: Behaviour of freeze-casting iron oxide for purifying hydrogen streams by steam-iron process. Int. J. Hydrogen Energy 41, 19518 (2016).10.1016/j.ijhydene.2016.06.062CrossRefGoogle Scholar
Wang, X., Li, K., Jia, L., Zhang, Q., Jiang, S.P., Chi, B., Pu, J., Jian, L., and Yan, D.: Porous Ni–Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors. J. Power Sources 277, 474 (2015).10.1016/j.jpowsour.2014.10.165CrossRefGoogle Scholar
Wilke, S.K. and Dunand, D.C.: Structural evolution of directionally freeze-cast iron foams during oxidation/reduction cycles. Acta Mater. 162, 90 (2019).10.1016/j.actamat.2018.09.054CrossRefGoogle Scholar
Luo, M., Yi, Y., Wang, S., Wang, Z., Du, M., Pan, J., and Wang, Q.: Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energy Rev. 81, 3186 (2018).10.1016/j.rser.2017.07.007CrossRefGoogle Scholar
Xu, N., Li, X., Zhao, X., Goodenough, J.B., and Huang, K.: A novel solid oxide redox flow battery for grid energy storage. Energy Environ. Sci. 4, 4942 (2011).10.1039/c1ee02489bCrossRefGoogle Scholar
Leonide, A., Drenckhahn, W., Greiner, H., and Landes, H.: Long term operation of rechargeable high temperature solid oxide batteries. J. Electrochem. Soc. 161, 9, A1297A1301 (2014).10.1149/2.0741409jesCrossRefGoogle Scholar
Trocino, S., Zignani, S.C., Lo Faro, M., Antonucci, V., and Aricò, A.S.: Iron–air battery operating at high temperature. Energy Technol. 5, 670 (2017).10.1002/ente.201600438CrossRefGoogle Scholar
Inoishi, A., Sakai, T., Ju, Y.W., Ida, S., and Ishihara, T.: Improved cycle stability of Fe-air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor. J. Power Sources 262, 310 (2014).10.1016/j.jpowsour.2014.03.125CrossRefGoogle Scholar
Um, T., Wilke, S.K., Choe, H., and Dunand, D.C.: Effects of pore morphology on the cyclical oxidation/reduction of iron foams created via camphene-based freeze casting. J. Alloy. Compd. (2020). Available at: https://doi.org/10.1016/j.jallcom.2020.156278 (accessed July 5th, 2020).CrossRefGoogle Scholar
Park, H., Um, T., Hong, K., Kang, J.S., Nam, H.-S., Kwon, K., Sung, Y.-E., and Choe, H.: Effects of powder carrier on the morphology and compressive strength of iron foams: Water vs camphene. Metall. Mater. Trans. B 49, 2182 (2018).10.1007/s11663-018-1302-zCrossRefGoogle Scholar
Trivedi, R.: Interdendritic spacing: Part II. A comparison of theory and experiment. Metall. Trans. A Phys. Metall. Mater. Sci. 15A, 977 (1984).10.1007/BF02644689CrossRefGoogle Scholar
Kurz, W. and Fisher, D.J.: Dendrite growth at the limit of stability: Tip radius and spacing. Acta Metall. 29, 11 (1981).10.1016/0001-6160(81)90082-1CrossRefGoogle Scholar
Çadirli, E., Marasli, N., Bayender, B., and Gündüz, M.: Dependency of the microstructure parameters on the solidification parameters for camphene. Mater. Res. Bull. 35, 985 (2000).10.1016/S0025-5408(00)00285-3CrossRefGoogle Scholar
Lloreda-Jurado, P.J., Pérez-Soriano, E.M., Paúl, A., Herguido, J., Peña, J.A., and Sepúlveda, R.: Doped iron oxide scaffolds with gradient porosity fabricated by freeze casting: pore morphology prediction and processing parameters. Mater. Sci. Technol. 36 (11), 12271237 (2020).10.1080/02670836.2020.1765096CrossRefGoogle Scholar
Shanti, N.O., Araki, K., and Halloran, J.W.: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89, 2444 (2006).10.1111/j.1551-2916.2006.01094.xCrossRefGoogle Scholar
Deville, S., Saiz, E., and Tomsia, A.P.: Ice-templated porous alumina structures. Acta Mater. 55, 1965 (2007).10.1016/j.actamat.2006.11.003CrossRefGoogle Scholar
Wilke, S.K. and Dunand, D.C.: In operando tomography reveals degradation mechanisms in lamellar iron foams during redox cycling at 800°C. J. Power Sources 448, 227463 (2020).10.1016/j.jpowsour.2019.227463CrossRefGoogle Scholar
Hildebrand, T. and Rüegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67 (1997).10.1046/j.1365-2818.1997.1340694.xCrossRefGoogle Scholar