Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T19:47:27.927Z Has data issue: false hasContentIssue false

Structures and electrical properties of barium strontium titanate thin films grown by multi-ion-beam reactive sputtering technique

Published online by Cambridge University Press:  03 March 2011

C-J. Peng*
Affiliation:
Intercollege Material Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi*
Affiliation:
Intercollege Material Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Also with Material Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, Republic of China.
b)Also with Department of Engineering Science and Mechanics.
Get access

Abstract

The structure and electrical properties of multi-ion beam reactive sputter (MIBERS) deposited barium strontium titanate (BST) films were characterized in terms of Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness, doping concentration, and secondary low-energy oxygen ion bombardment. Films deposited onto unheated substrates, followed by annealing at 700 °C showed lower dielectric constant (<200), compared to a dielectric constant of about 560 for those deposited at elevated temperatures, probably due to reduced voids. Two types of microstructures (type I and type II) were observed depending on the incipient phase of the as-grown films, which also led to two types of time domain dielectric response, Curie-von Schweidler and Debye type, respectively. The current-voltage (I-V) characteristics of type II films doped with high donor concentration showed a bulk space-charge-limited conduction (SCLC) with discrete shallow traps embedded in a trap-distributed background at high electric fields. The I-V characteristics of bombarded films deposited at higher substrate temperatures showed promising results of lower leakage currents and trap densities.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Parker, L. H. and Tasch, A. F., IEEE Circuits and Devices Mag. 6, 1726 (Jan. 1990).CrossRefGoogle Scholar
2Syamaprasad, U., Galgali, R. K., and Mohanty, B. C., Mater. Lett. 8 (12), 36 (1989).CrossRefGoogle Scholar
3Syamaprasad, U., Galgali, R. K., and Mohanty, B. C., Mater. Lett. 7 (5/6), 197 (1988).CrossRefGoogle Scholar
4Krupanidhi, S. B., Hu, H., and Kumar, V., J. Appl. Phys. 71 (1), 376388 (1992).CrossRefGoogle Scholar
5Moulson, A. J. and Herbert, J. M., Electroceramics (Chapmann and Hall, London, 1990), p. 230.Google Scholar
6Templeton, L. K. and Pask, J. H., J. Am. Ceram. Soc. 42, 212 (1959).CrossRefGoogle Scholar
7Nomura, T. and Yamaguchi, T., Am. Ceram. Soc. Bull. 59, 453 (1980).Google Scholar
8Arlt, G., Hennings, D., and De With, G., J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
9Miyasaka, Y. and Matsubara, S., 1990 IEEE 7th Int. Symp. on Appl. of Ferroelectrics, Urbana, IL, edited by Krupanidhi, S. B. and Kurtz, S. K. (1992), p. 121.Google Scholar
10Nomura, S., Jpn. J. Phys. Soc. 11 (9), 924929 (1956).CrossRefGoogle Scholar
11Kolar, D., Trontelj, M., and Stadlir, Z., J. Am. Ceram. Soc. 65 (10), 470474 (1982).CrossRefGoogle Scholar
12Shannon, R. P. and Prewitt, C. T., Acta Crystallogr. B 25, 925 (1969).CrossRefGoogle Scholar
13Hu, H. and Krupanidhi, S. B., Appl. Phys. Lett. 61, 1246 (1992).CrossRefGoogle Scholar
14Thornton, J. A., J. Vac. Sci. Technol. 12 (4), 830 (1975).CrossRefGoogle Scholar
15Krupanidhi, S. B., Hu, H., and Kumar, V., J. Appl. Phys. 71 (1), 376388 (1992).CrossRefGoogle Scholar
16Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 7, 3039 (1992).CrossRefGoogle Scholar
17Arlt, G., Ferroelectrics 104, 217 (1990).CrossRefGoogle Scholar
18Yehoda, J. E., Ph.D. Thesis, Solid State Science, The Pennsylvania State University, University Park, PA (1988).Google Scholar
19Muller, K. H., J. Appl. Phys. 59, 2803 (1986).CrossRefGoogle Scholar
20Messier, R., Giri, A. P., and Roy, R. A., J. Vac. Sci. Technol. A 2, 500 (1984).CrossRefGoogle Scholar
21Thornton, J. A., J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
22Linz, A., Phys. Rev. 91, 753 (1953).CrossRefGoogle Scholar
23Feldman, C., J. Appl. Phys. 65, 872 (1989).CrossRefGoogle Scholar
24Burfoot, J. C. and Slack, J. R., Jpn. J. Appl. Phys. Suppl. 28, 417 (1970).Google Scholar
25Jayaraj, M. K. and Vallabham, C. P. G., Thin Solid Films 197, 15 (1991).CrossRefGoogle Scholar
26Chopra, K. L., Thin Film Phenomena (McGraw-Hill, New York, 1969), pp. 189 and 466.Google Scholar
27Lewis, G. V. and Catlow, C.R.A., Radiat. Eff. 73, 307314 (1983).CrossRefGoogle Scholar
28Lewis, G. V. and Catlow, C. R. A., J. Phys. Chem. Solids 47 (1), 8997 (1986).CrossRefGoogle Scholar
29Peng, C-J. and Krupanidhi, S.B., Appl. Phys. Lett. 63 (6), 734 (1993).CrossRefGoogle Scholar
30Hench, L. L. and West, J. K., Principles of Electronic Ceramics (John Wiley & Sons, New York, 1990), p. 190.Google Scholar
31Jonscher, A. K., Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, UK, 1983), pp. 161253.Google Scholar
32Sayer, M., Manisgh, A., Arora, A. K., and Lo, A., Integrated Ferroelectrics 1, 129 (1992).CrossRefGoogle Scholar
33Waser, R. and Klee, M., Proc 3rd Int. Symp. on Integrated Ferroelectrics, Colorado Springs, CO (1991), pp. 288305.Google Scholar
34Waser, R., J. Am. Ceram. Soc. 74 (8), 19341940 (1991).CrossRefGoogle Scholar
35Peng, C-J. and Krupanidhi, S. B., unpublished.Google Scholar
36Hill, R. M. and Dissado, L. A., J. Phys. C: Solid Sate Physics 15, 5171 (1982).CrossRefGoogle Scholar
37O'Dwyer, J. J., The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Clarendon Press, Oxford, 1973), p. 10.Google Scholar
38Melnick, B. M., Scott, J. F., Paz de Araujo, C.A., and McMillan, L.D., Ferroelectrics 135, 163 (1992).CrossRefGoogle Scholar
39Hu, H., Ph.D. Thesis, Solid State Science, The Pennsylvania State University, University Park, PA (1993).Google Scholar
40Fox, G. R. and Krupanidhi, S. B., J. Appl. Phys. 74 (3), 1049 (1993).CrossRefGoogle Scholar
41Joshi, P. C. and Krupanidhi, S. B., J. Appl. Phys. 73 (11), 7627 (1993).CrossRefGoogle Scholar
42Yoo, I. K. and Desu, S. B., IEEE 8th Int. Symp. on Appl. of Ferroelectrics, Greensville, SC (1992).Google Scholar
43Lee, J. J. and Dey, S. K., 6thlnt. Symp. on Integrated Ferroelectrics, Monterey, CA (1994).Google Scholar
44Scott, J. F., Azuma, M., Paz de Araujo, C. A., McMillan, L. D., Scott, M. C., and Roberts, T., 5th Int. Symp. on Integrated Ferroelectrics, Monterey, CA (1993).Google Scholar
45Peng, C-J. and Krupanidhi, S.B., J. Appl. Phys. (1995, in press).Google Scholar
46Lampert, M. A. and Mark, P., Current Injection in Solids (Academic Press, New York, 1970), p. 23.Google Scholar
47Levinson, L. M. and Philipp, H. R., in Ceramic Materials for Electronics, edited by Buchanan, R. C. (Marcel Dekker Inc., New York, 1986), pp. 375402.Google Scholar
48Sze, S. M., Physics of Semiconductor Devices (1981), p. 403.Google Scholar
49Peng, C-J. and Krupanidhi, S. B., Appl. Phys. Lett. 63 (8), 1038 (1993).CrossRefGoogle Scholar
50Helfrich, W. and Mark, P., Z. Phys. 171, 527 (1963).CrossRefGoogle Scholar
51Adolph, J., Baldinger, E., Czaja, W., and Granacher, I., Phys. Lett. 6, 137 (1963).CrossRefGoogle Scholar
52Seuter, A. M.J. H., Philips Res. Rep. Suppl. (3), 50 (1974).Google Scholar
53Smyth, D. M., Prog. Solid State Chem. 15, 145 (1984).CrossRefGoogle Scholar
54Benguigi, L., J. Phys. Chem. Solids 34, 573 (1973).CrossRefGoogle Scholar
55Lee, H. Y., Lee, K-L., Schunke, N., and Burton, L. C., IEEE Trans, on Components, Hybrids, Manuf. Technol. CHMT–7 (4), 443 (1984).CrossRefGoogle Scholar
56Sabara, Y. Y., Kudzin, A. Y., and Kolesnichenko, K. A., Phys. Status Solidi A 38, K131 (1976).Google Scholar
57Bengnigi, L., Solid State Commun. 7, 1245 (1969).CrossRefGoogle Scholar
58Tredgold, R. H., Space Charge Conduction in Solids (Elsevier Publishing Co., New York, 1966).CrossRefGoogle Scholar
59Hiergeist, P.et al, IEEE Trans. Electron Devices 36 (5), 913 (1989).CrossRefGoogle Scholar
60Loh, E., J. Appl. Phys. 53, 6229 (1982).CrossRefGoogle Scholar
61Neumann, H. and Arlt, G., Ferroelectrics 69, 179 (1986).CrossRefGoogle Scholar
62Lehovec, K. and Shirn, G. A., J. Appl. Phys. 33, 2036 (1962).CrossRefGoogle Scholar
63Yoo, I. K., Stephenson, F. W., and Burton, L. C., IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT–10 (2), 274 (1987).CrossRefGoogle Scholar
64Waser, R., Baitsu, T., and Hardtl, K. H., J. Am. Ceram. Soc. 73, 1645, 1654, 1663 (1990).CrossRefGoogle Scholar
65Desu, S. B. and Yoo, I. K., 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA (1992), p. 640.Google Scholar
66Sudhama, C., Kim, J., Lee, J., Chikarmane, V., Shepherd, W., and Myers, E. R., J. Vac. Sci. Technol. B 11 (4), 1302 (1993).CrossRefGoogle Scholar
67Okazaki, K., Adv. Ceram. 1, 23 (1979).Google Scholar
68Carrano, J., Sudhama, C., Chikarmane, V., Lee, J., Tasch, A., Shepherd, W., and Abt, N., IEEE Trans, on Ultrasonics, Ferroelectrics, and Frequency Control 38 (6), 690 (1991).CrossRefGoogle Scholar
69Klee, M., Eusemann, R., Waser, R., Brand, W., and von Hal, H., J. Appl. Phys. 72 (4), 1566 (1992).CrossRefGoogle Scholar