Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:17:04.211Z Has data issue: false hasContentIssue false

Study of stability of ultrathin Au films on Cu(100) using positron annihilation-induced Auger electron spectroscopy (PAES)

Published online by Cambridge University Press:  03 March 2011

G. Yang
Affiliation:
Materials Science and Engineering Program, University of Texas at Arlington, Box 19059, Arlington, Texas 76019-0059
J.H. Kim
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, Texas 76019-0059
K.H. Lee
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, Texas 76019-0059
S. Yang
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, Texas 76019-0059
A.R. Koymen
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, Texas 76019-0059
A.H. Weiss
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, Texas 76019-0059
Get access

Abstract

PAES (Positron Annihilation induced Auger Electron Spectroscopy) intensities from ultrathin Au films deposited at 198 K on Cu(100) were measured as a function of temperature (from 198 K to 348 K) for three different Au coverages. Intermixing of Au and Cu atoms with the increase of temperature was directly monitored. The measurements indicated that the intermixing was not reversible as a function of temperature. EAES (Electron induced Auger Electron Spectroscopy) results were compared with PAES results for each experiment, and the comparison showed the feasibility of PAES over EAES for the study of surface alloy formation as a function of temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Logan, A. D. and Paffett, M. T., J. Catal. 133, 179 (1992).Google Scholar
2Kim, C. and Somorjai, G. A., J. Catal. 134, 179 (1992).CrossRefGoogle Scholar
3Mehl, D., Koymen, A. R., Jensen, K. O., Gotwald, F., Jibaly, M., and Weiss, A. H., Phys. Rev. B 41, 799 (1990).CrossRefGoogle Scholar
4Koymen, A. R., Lee, K. H., Yang, G., and Weiss, A. H., Phys. Rev. B 48, 2020 (1993).CrossRefGoogle Scholar
5Lee, K. H., Yang, G., Koymen, A. R., and Weiss, A. H., Phys. Rev. Lett. 72, 1855 (1994).Google Scholar
6Yang, G., Yang, S., Kim, J. H., Lee, K. H., Koymen, A. R., Weiss, A. H., and Mulhollan, G. A., J. Vac. Sci. Technol. 10, 411 (1994).CrossRefGoogle Scholar
7Palmberg, P. W. and Rhodin, T. N., J. Chem. Phys. 49, 134 (1968).CrossRefGoogle Scholar
8Graham, G. W., Surf. Sci. 184, 137 (1987).CrossRefGoogle Scholar
9Chambliss, D. D. and Chiang, S., Surf. Sci. 264, 1187 (1991).Google Scholar
10Hansen, J. C., Benson, J. A., Clendening, W. D., McEllistrem, M. T., and Tobin, J. G., Phys. Rev. B 36, 6186 (1987).CrossRefGoogle Scholar
11Hansen, J. C. and Tobin, J. G., J. Vac. Sci. Technol. A 7 (3), 2475 (1988).CrossRefGoogle Scholar
12Lei, C., Mehl, D., Koymen, A. R., Gotwald, F., Jibaly, M., and Weiss, A. H., Rev. Sci. Instrum. 60, 3656 (1989).CrossRefGoogle Scholar
13Lee, K. H., Koymen, A. R., Mehl, D., Jensen, K. O., and Weiss, A. H., Surf. Sci. 264, 127 (1992).CrossRefGoogle Scholar
14Egelhoff, W. F. Jr. and Jacob, I., Phys. Rev. Lett. 62, 922 (1989).CrossRefGoogle Scholar
15Belkhou, R., Barrett, N. T., Guillot, C., Fang, M., Barbier, A., Eugene, J., Carriere, B., Naumovic, D., and Osterwalder, J., Surf. Sci. 297, 40 (1993).CrossRefGoogle Scholar
16Senhaji, A., Treglia, G., Legrand, B., Barrett, N. T., Guillot, C., and Villette, B., Surf. Sci. 274, 297 (1992).CrossRefGoogle Scholar