Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:25:02.625Z Has data issue: false hasContentIssue false

A study of temperature and pressure induced structural and electronic changes in SbCl5 intercalated graphite: Part IV. The basal plane resistivity

Published online by Cambridge University Press:  03 March 2011

O.E. Andersson
Affiliation:
Department of Experimental Physics, University of Umeå. S-901 87 Umeå, Sweden
B. Sundqvist
Affiliation:
Department of Experimental Physics, University of Umeå. S-901 87 Umeå, Sweden
E. McRae
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Minéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérale Appliquée, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex. France
M. Lelaurain
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Minéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérale Appliquée, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex. France
J.F. Marêché
Affiliation:
Université de Nancy I, Laboratoire de Chimie du Solide Minéral, U.R.A. C.N.R.S. 158, Service de Chimie Minérale Appliquée, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cédex. France
Get access

Abstract

Using an inductive technique, we have measured the in-plane resistivity ρa of stages 2, 4, 5, and 8 SbCl5-GIC's versus temperature T and pressure p in the ranges 130–300 K and 0–0.85 GPa. The room temperature values of ρa range from 4.0 μΩcm for the stages 5 sample to 7.7 μΩcm for the stage 8 sample. At all pressures, ρa shows a metallic temperature dependence ρaTα, with 1 ≤ a ≤ 2, but in contrast to the c-axis resistivity ρc, it depends only very weakly on pressure and/or intercalate structural order. We show that the behavior observed is consistent with a band conduction model.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lelaurain, M., Marêché, J.F., McRae, E., Andersson, O. E., and Sundqvist, B., J. Mater. Res. 7, 2978 (1992).CrossRefGoogle Scholar
2Andersson, O. E., Sundqvist, B., McRae, E., Marêché, J.F., and Lelaurain, M., J. Mater. Res. 7, 2989 (1992).CrossRefGoogle Scholar
3Sundqvist, B., Andersson, O. E., McRae, E., Lelaurain, M., and Marêché, J.F., J. Mater. Res. 10, 436 (1995).CrossRefGoogle Scholar
4Sundqvist, B. and Lundberg, B., in High Pressure in Science and Technology, Part III, edited by Homan, C., MacCrone, R.K., and Whalley, E. (Mater. Res. Soc. Symp. Proc. 22, Elsevier Science Publishing, New York, 1984), p. 281.Google Scholar
5Dodd, C. V. and Deeds, W. E., J. Appl. Phys. 39, 2829 (1968).CrossRefGoogle Scholar
6Uzal, E., Moulder, J. C., Mitra, S., and Rose, J. H., J. Appl. Phys. 74, 2076 (1993).CrossRefGoogle Scholar
7Sundqvist, B., J. Phys. E 20, 984 (1987).CrossRefGoogle Scholar
8McRae, E. and Marêché, J.F., J. Phys. C: Solid State Phys. 18, 1627 (1986).CrossRefGoogle Scholar
9Sundqvist, B. and Lundberg, B., J. Phys. C: Solid State Phys. 19, 6915 (1986).CrossRefGoogle Scholar
10Clarke, R., Elzinga, M., Gray, J. N., Homma, H., Morelli, D. T., Winokur, M. J., and Uher, C., Phys. Rev. B 26, 5250 (1982).CrossRefGoogle Scholar
11Brandt, N. B., Avdeev, V. V., Ionov, S. G., Mukhanov, V. A., Semenenko, K. N., Kostikov, V. I., Kotosonov, A. S., and Kuvshinnikov, S. V., Sov. Phys. JETP 64, 663 (1986).Google Scholar
12Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 198.Google Scholar
13Kamimura, H., Nakao, K., Ohno, T., and Inoshita, T., Physica B 99, 401 (1980); Inoshita, T. and Kamimura, H., Synth. Metals 3, 223 (1981); Kamimura, H., Physica B 105, 501 (1981).CrossRefGoogle Scholar
14Pietronero, L., Strässler, S., Zeller, H. R., and Rice, M.J., Physica B 99, 499 (1980); Pietronero, L. and Strässler, S., Phys. Rev. B 23, 6793 (1981); Pietronero, L. and Strässler, S., Synth. Metals 3, 213 (1981).CrossRefGoogle Scholar
15Issi, J. P. and Piraux, L., Ann. Physique (France), Coll. 2 11, 165 (1986); Piraux, L., Issi, J. P., Salamanaca-Riba, L., and Dresselhaus, M. S., Synth. Metals 16, 93 (1986).Google Scholar
16Kukkonen, C. A., Phys. Rev. B 18, 1849 (1978).CrossRefGoogle Scholar
17lye, Y., Takahashi, O., Tanuma, S., Tsuji, K., and Minomura, S., J. Phys. Soc. Jpn. 51, 475 (1982).Google Scholar
18Syassen, K., Sonnenschein, R., Hanfland, M., and Beister, H. J., Synth. Metals 34, 293 (1989).CrossRefGoogle Scholar
19Grimvall, G., Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986), p. 218.Google Scholar
20Benson, D. A. and Gauster, W. B., Philos. Mag. 31, 1209 (1975).CrossRefGoogle Scholar
21Gschneider, K. A. Jr., Solid State Phys. 16, 275 (1964).CrossRefGoogle Scholar
22Ziman, J. M., Electrons and Phonons (Clarendon Press, Oxford, 1960), p. 418.Google Scholar
23Alzyab, B., Perry, C. H., Zalinpoulos, C., Pringle, O. A., and Nicklow, R. M., Phys. Rev. B 38, 1544 (1988).CrossRefGoogle Scholar
24Uher, C., Hockey, R. L., and Ben-Jacob, E., Phys. Rev. B 35, 4483 (1987).CrossRefGoogle Scholar
25Blinowski, J., Hao, N. H., Rigaux, C., Vieren, J. P., Le Toullec, R., Furdin, G., HSträsslerrold, A., and Melin, J., J. Phys. (Paris) 41, 47 (1980); Blinowski, J. and Rigaux, C., J. Phys. (Paris) 41, 667 (1980).CrossRefGoogle Scholar
26Hoffman, D. M., Heinz, R. E., Doll, G. L., and Eklund, P. C., Phys. Rev. B 32, 1278 (1985).CrossRefGoogle Scholar