Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T15:21:21.806Z Has data issue: false hasContentIssue false

A study on H2 plasma treatment effect on a-IGZO thin film transistor

Published online by Cambridge University Press:  03 July 2012

Jihoon Kim
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Seokhwan Bang
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Seungjun Lee
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Seokyoon Shin
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Joohyun Park
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
Hyungtak Seo*
Affiliation:
Department of Materials Science & Engineering, Ajou University, Woncheon-Dong, Yeongtong-Gu, Suwon 443-739, Korea
Hyeongtag Jeon*
Affiliation:
Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
*
a)Address all correspondence to these authors. e-mail: hseo@ajou.ac.kr
Get access

Abstract

We report the effect of H2 plasma treatment on amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistor (TFT). The changes in electrical characteristics and stability of the a-IGZO TFT treated by H2 plasma were evaluated under thermal stress. Each device exhibited a change in the subthreshold swing, turn on voltage shift, and hysteresis depending on the amount of hydrogen atom. It was found that there occurred a decrease of oxygen deficiency and an increase of hydrogen content in channel layer and channel/dielectric interface with increasing treatment time. The proper hydrogen dose well passivated the oxygen vacancies; however, more hydrogen dose acted as excessive donors. The change of oxygen vacancy and total trap charge were explained by the activation energy from Arrhenius plot. Through this study, we found that the optimized H2 plasma treatment brings device stability by affecting oxygen vacancy and trap content in channel bulk and channel/dielectric interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).CrossRefGoogle ScholarPubMed
2.Hayashi, R., Sato, A., Ofuji, M., Abe, K., Yabuta, H., Sano, M., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: Invited paper: Improved amorphous in-Ga-Zn-O TFTs. SID Int. Symp. Dig. Tech. 39, 621 (2008).Google Scholar
3.Monakhov, E.V., Christensen, J.S., Maknys, K., Svensson, B.G., and Kuznetsov, A.Y.: Hydrogen implantation into ZnO for n(+)-layer formation. Appl. Phys. Lett. 87, 191910 (2005).CrossRefGoogle Scholar
4.Kumar, M., Chatterjee, R., Milikisiyants, S., Kanjilal, A., Voelskow, M., Grambole, D., Lakshmi, K.V., and Singh, J.P.: Investigating the role of hydrogen in indium oxide tubular nanostructures as a donor or oxygen vacancy passivation center. Appl. Phys. Lett. 95, 013102 (2009).CrossRefGoogle Scholar
5.Tsao, S.W., Chang, T.C., Huang, S.Y., Chen, M.C., Chen, S.C., Tsai, C.T., Kuo, Y.J., Chen, Y.C., and Wu, W.C.: Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid State Electron. 54, 1497 (2010).CrossRefGoogle Scholar
6.Jeong, J.H., Yang, H.W., Park, J.S., Jeong, J.K., Mo, Y.G., Kim, H.D., Song, J., and Hwang, C.S.: Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors. Electrochem. Solid-State Lett. 11, H157 (2008).CrossRefGoogle Scholar
7.Kamiya, T., Nomura, K., and Hosono, H.: Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010).CrossRefGoogle ScholarPubMed
8.Hoshino, K., Hong, D., Chiang, H.Q., and Wager, J.F.: Constant-voltage-bias stress testing of a-IGZO thin-film transistors. IEEE Trans. Electron Devices 56, 1365 (2009).CrossRefGoogle Scholar
9.Lecomber, P.G. and Spear, W.E.: Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509 (1970).Google Scholar
10.Kim, Y.M., Jeong, K.S., Yun, H.J., Yang, S.D., Lee, S.Y., Lee, H.D., and Lee, G.W.: Anomalous stress-induced hump effects in amorphous indium gallium zinc oxide TFTs. Trans. Electr. Electron. Mater. 13, 47 (2012).CrossRefGoogle Scholar
11.Park, S.H.K., Hwang, C.S., Ryu, M., Yang, S., Byun, C., Shin, J., Lee, J.I., Lee, K., Oh, M.S., and Im, S.: Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Adv. Mater. 21, 678 (2009).CrossRefGoogle Scholar
12.Huang, C.F., Peng, C.Y., Yang, Y.J., Sun, H.C., Chang, H.C., Kuo, P.S., Chang, H.L., Liu, C.Z., and Liu, C.W.: Stress-induced hump effects of p-channel polycrystalline silicon thin-film transistors. IEEE Electron Device Lett. 29, 1332 (2008).CrossRefGoogle Scholar
13.Chung, Y.J., Kim, J.H., Kim, U.K., Ryu, M., Lee, S.Y., and Hwang, C.S.: Study on the existence of abnormal hysteresis in Hf-In-Zn-O thin film transistors under illumination. Electrochem. Solid-State Lett. 14, H300 (2011).Google Scholar
14.Kim, G.H., Kim, H.S., Shin, H.S., Ahn, B.D., Kim, K.H., and Kim, H.J.: Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517, 4007 (2009).CrossRefGoogle Scholar
15.Bellingham, J.R., Mackenzie, A.P., and Phillips, W.A.: Precise measurements of oxygen-content - oxygen vacancies in transparent conducting indium oxide-films. Appl. Phys. Lett. 58, 2506 (1991).Google Scholar
16.Nomura, K., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O(2) annealing. Appl. Phys. Lett. 93, 192107 (2008).Google Scholar
17.Kamiya, T., Nomura, K., and Hosono, H.: Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. IEEE/OSA J. Disp. Technol. 5, 273 (2009).Google Scholar
18.Seo, H., Park, C.J., Cho, Y.J., Kim, Y.B., and Choi, D.K.: Correlation of band edge native defect state evolution to bulk mobility changes in ZnO thin films. Appl. Phys. Lett. 96, 232101 (2010).CrossRefGoogle Scholar
19.Lin, C.C., Chen, H.P., Liao, H.C., and Chen, S.Y.: Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005).CrossRefGoogle Scholar
20.Kamiya, T., Nomura, K., and Hosono, H.: Subgap states, doping and defect formation energies in amorphous oxide semiconductor a-InGaZnO(4) studied by density functional theory. Phys. Status Solidi A 207, 1698 (2010).Google Scholar
21.Ji, K.H., Kim, J.I., Jung, H.Y., Park, S.Y., Mo, Y.G., Jeong, J.H., Kwon, J.Y., Ryu, M.K., Lee, S.Y., Choi, R., and Jeong, J.K.: The effect of density-of-state on the temperature and gate bias-induced instability of InGaZnO thin film transistors. J. Electrochem. Soc. 157, H983 (2010).Google Scholar
22.Jeong, J., Jeong, J.K., Park, J.S., Mo, Y.G., and Hong, Y.: Meyer-Neldel rule and extraction of density of states in amorphous indium-gallium-zinc-oxide thin-film transistor by considering surface band bending. Jpn. J. Appl. Phys. 49, 03CB02 (2010).CrossRefGoogle Scholar
23.Slade, H.C., Shur, M.S., Deane, S.C., and Hack, M.: Below threshold conduction in a-Si:H thin film transistors with and without a silicon nitride passivating layer. Appl. Phys. Lett. 69, 2560 (1996).CrossRefGoogle Scholar
24.Pichon, L., Mercha, A., Carin, R., Bonnaud, O., Mohammed-Brahim, T., Helen, Y., and Rogel, R.: Analysis of the activation energy of the subthreshold current in laser- and solid-phase-crystallized polycrystalline silicon thin-film transistors. Appl. Phys. Lett. 77, 576 (2000).Google Scholar