Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T02:16:27.822Z Has data issue: false hasContentIssue false

A study on the mechanism of amorphous phase formation by interdiffusion in Ni/Zr multilayers

Published online by Cambridge University Press:  03 March 2011

Sang-Gweon Chang
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Gusong Dong 373-1, Yusong Gu, Taejon, Korea
Jai-Young Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Gusong Dong 373-1, Yusong Gu, Taejon, Korea
Geun-Hong Kim
Affiliation:
Advanced Technology Research Center, Agency for Defense Development, P.O. Box 35, Taejon, Korea
Chang-Hwan Chun
Affiliation:
Advanced Technology Research Center, Agency for Defense Development, P.O. Box 35, Taejon, Korea
Get access

Abstract

The mechanism of the solid-state amorphization has been investigated by means of the microstructural studies on the evolution of Ni/Zr diffusion couples, prepared at different sputtering pressures, during short heating times at high temperature. In the sample deposited at 8 mTorr compared to that at 3 mTorr, the possibility of the supersaturation sequence prior to amorphization is observed, and the amorphous phase grows extremely fast with diffuse interface. A high-resolution TEM image shows that the amorphous phase preferentially penetrates along the Zr grain boundary into the Zr layer and selectively grows from the grain boundary into the region of Zr grain with many defects. From the results, the importance of interstitial diffusion has been discussed, and a modified mechanism has been suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yeh, X. L., Samwer, K., and Johnson, W. L., Appl. Phys. Lett. 42, 242 (1983).CrossRefGoogle Scholar
2Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
3Samwer, K., Phys. Rep. 161, 1 (1988).CrossRefGoogle Scholar
4Johnson, W. L., in Materials Interfaces, edited by Wolf, D. and Yip, S. (Chapman & Hall, New York, 1992).Google Scholar
5Vredenberg, A. M., Westendorp, J. F. M., Saris, F. W., van der Pers, N. M., and de Keijser, Th. H., J. Mater. Res. 1, 774 (1986).CrossRefGoogle Scholar
6Meng, W.J., Nieh, C. W., Ma, E., Fultz, B., and Johnson, W. L., Mater. Sci. Eng. 97, 87 (1988).CrossRefGoogle Scholar
7Saunders, N. and Miodownik, A. P., J. Mater. Res. 1, 38 (1986).CrossRefGoogle Scholar
8Fecht, H. J., Desre, P., and Johnson, W. L., Philos. Mag. 59, 577 (1989).CrossRefGoogle Scholar
9Hoffman, D. W. and Thornton, J. A., J. Vac. Sci. Technol. 16, 134 (1979).CrossRefGoogle Scholar
10Hahn, H. and Averback, R. S., Phys. Rev. B 37, 6533 (1988).CrossRefGoogle Scholar
11Cheng, Y. T., Nicolet, M. A., and Johnson, W. L., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
12Meng, W. J., Nieh, C. W., and Johnson, W. L., Appl. Phys. Lett. 51, 1693 (1987).CrossRefGoogle Scholar
13Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1436 (1986).CrossRefGoogle Scholar
14Meng, W. J., Okamoto, P. R., Thompson, L. J., Kestel, B. K., and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988).CrossRefGoogle Scholar
15Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F., and Kluge, M., J. Mater. Res. 5, 286 (1990).CrossRefGoogle Scholar
16Meng, W. J., Okamoto, P. R., Thompson, L. J., Kestel, B. J., and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988).CrossRefGoogle Scholar