Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T03:35:50.340Z Has data issue: false hasContentIssue false

Subsolidus phase relations in the La2O3–Fe2O3–Al2O3 system

Published online by Cambridge University Press:  26 November 2012

Danjela Kuščer
Affiliation:
Jozěf Stefan Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
Slavko Bernik
Affiliation:
Jozěf Stefan Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
Marko Hrovat
Affiliation:
Jozěf Stefan Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
Janez Holc
Affiliation:
Jozěf Stefan Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
Get access

Abstract

The subsolidus phase relations in the La–Fe–Al–O system were investigated for solid oxide fuel cell (SOFC) applications. Five compounds, LaAlO3, LaAl11O18, LaFe12O19, AlFeO3, and LaFeO3, coexist in the La–Fe–Al–O system at 1380 °C in air. The microstructure and composition of the samples were studied by x-ray diffractometry and scanning electron microscopy. Based on experimental evidence, a phase diagram of the La2O3–Al2O3–Fe2O3 system has been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tai, L.W., Nasrallah, M.M., and Anderson, H.U., in Proceedings of the Third International Symposium on SOFC, edited by Singal, S.C. and Iwahara, H. (Honolulu, Hawaii, 1993), pp. 241251.Google Scholar
2.Yokokawa, H., Sakai, N., Kawada, T., and Dokiya, M., Solid State Ionics 52, 4356 (1992).CrossRefGoogle Scholar
3.Kuščer, D., Holc, J., Hrovat, M., Bernik, S., and Kolar, D., in Proceedings of the Fifth International Symposium on SOFC, edited by Stimming, U., Singal, S.C., Tagawa, H., and Lehnert, W. (Aachen, Germany, 1997), pp. 947955.Google Scholar
4.Holc, J., Kuščer, D., Hrovat, M., Bernik, S., and Kolar, D., Solid State Ionics 95, 259268 (1997).CrossRefGoogle Scholar
5.Geller, S. and Bala, V.B., Acta Crystallogr. 9, 10191025 (1956).CrossRefGoogle Scholar
6.Geler, S. and Raccah, P.M., Phys. Rev. B 2 (4), 11671172 (1970).CrossRefGoogle Scholar
7.Berkstresser, G.W., Valentino, A.J., and Brandle, C.D., J. Cryst. Growth 109, 467471 (1991).CrossRefGoogle Scholar
8.Fritsche, E.T. and Tensmeyer, L.G., J. Am. Ceram. Soc. 50, 167 (1967).CrossRefGoogle Scholar
9.Roth, R.S. and Hasko, S., J. Am. Ceram. Soc. 41, 146 (1958).CrossRefGoogle Scholar
10.Ropp, R.C. and Carroll, B., J. Am. Ceram. Soc. 63, 416419 (1980).CrossRefGoogle Scholar
11.Kato, A., Yamashita, H., Kawagoshi, H., and Matsuda, S., J. Am. Ceram. Soc. 70, C157–C159 (1987).CrossRefGoogle Scholar
12.Yamaguchi, O., Sugiura, K., Mitsui, A., Shimizu, K., J. Am. Ceram. Soc. 68, C44–C45 (1985).Google Scholar
13.Geller, S. and Wood, E.A., Acta Crystallogr. 9, 563568 (1956).CrossRefGoogle Scholar
14.Moruzzi, V.L. and Shafer, M.W., J. Am. Ceram. Soc. 43 (7), 367372 (1960).CrossRefGoogle Scholar
15.Muan, A., Am. J. Sci. 413422 (1958).CrossRefGoogle Scholar
16.Shannon, R.D., Acta Crystallogr. A32, 751767 (1976).CrossRefGoogle Scholar
17.Kuščer, D., Dimc, F., Holc, J., Hrovat, M., Bernik, S., and Kolar, D., J. Mater. Sci. Lett. 15, 974976 (1996).CrossRefGoogle Scholar
18. Powder Diffraction File Card No. 31–22. Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1984.Google Scholar
19. Powder Diffraction File Card No. 14–474. Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1984.Google Scholar