Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T19:11:35.096Z Has data issue: false hasContentIssue false

Subsurface cracking during indentation on hybrid coatings on polycarbonate

Published online by Cambridge University Press:  31 January 2011

Victor A Soloukhin
Affiliation:
Laboratory of Solid State and Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
José C.M. Brokken-Zijp
Affiliation:
Laboratory of Solid State and Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, and Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
Gijsbertus de With
Affiliation:
Laboratory of Solid State and Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

Subsurface cracking after nano- and Vickers indentation on transparent silica–(meth)acrylate hybrid coatings deposited on a polycarbonate substrate was observed for the first time. It appeared that after initiation at the interface, these cracks propagated toward the surface and in radial directions as the indentation load increased. It was found that, for chemically identical coatings, the thicker the coating, the higher load necessary to initiate these cracks. Subsurface cracks formed during nanoindentation occur at lower loads than the normally observed surface cracks and are accompanied by a very small change in the slope of the loading curve.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Pang, M. and Bahr, D.F., J. Mater. Res. 16, 2634 (2001).CrossRefGoogle Scholar
Page, T.F., Pharr, G.M., Hay, J.C., Oliver, W.C., Lucas, B.N., Herbert, E., Riester, L., in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), pp. 5364.Google Scholar
Xu, Z-H. and Rowcliffe, D., Surf. Coat. Technol. 161, 44 (2002).CrossRefGoogle Scholar
Michler, J., Tobler, M., and Blank, E., Diamond Relat. Mater. 8, 510 (1999).CrossRefGoogle Scholar
Li, X., Diao, D., and Bhushan, B., Acta Mater. 45, 4453 (1997).CrossRefGoogle Scholar
Hainsworth, S.V., McGurk, M.R., Page, T.F., Surf. Coat. Technol. 102, 97 (1998).CrossRefGoogle Scholar
Malzbender, J., With, G. de, and Toonder, J.M.J. den, Thin Solid Films 372, 134 (2000).CrossRefGoogle Scholar
Cook, R.F. and Pharr, G.M., J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar
Woirgard, J., Dargenton, J-C., Tromas, C., Audurier, V., Surf. Coat. Technol. 100–101, 103 (1998).CrossRefGoogle Scholar
Odén, M., Ljungcrantz, H., and Hultman, L., J. Mater. Res. 12, 2134 (1997).CrossRefGoogle Scholar
Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., and Swain, M.V., J. Mater. Res. 14, 2338 (1999).CrossRefGoogle Scholar
Asif, S.A. Syad, Wahl, K.J., and Colton, R.J., J. Mater. Res. 15, 546 (2000).Google Scholar
Shemkunas, M.P. and Petuskey, W.T., in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), pp. 275280.Google Scholar
Gerberich, W.W., Kramer, D.E., Tymiak, N.I., Volinsky, A.A., Bahr, D.F., and Kriese, M.D., Acta. Mater. 47, 4115 (1999).CrossRefGoogle Scholar
Bahr, D.F., Pang, M., and Rodriquez-Marek, D., in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), pp. Q4.2.1–Q4.2.6.Google Scholar
Kulkarni, A.V. and Bhushan, B., J. Mater. Res. 12, 2707 (1997).CrossRefGoogle Scholar
Oyen-Tiesma, M., Toivola, Y.A., and Cook, R.F., in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), pp. Q1.5.1–Q1.5.6.Google Scholar
Grunlan, J.C., Rowenhorst, D., Francis, L.F., and Gerberich, W.W., in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q3.5.1–Q3.5.6 (2001).Google Scholar
Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 14, 292 (1999).Google Scholar
Page, T.F., Riester, L., and Hainsworth, S.V., in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), 113118 (1998).Google Scholar
Carvalho, N., Ph.D. Thesis, Low Friction and Wear Resistant Coatings: Microstructure and Mechanical Properties (Groningen University Press, Groningen, The Netherlands, 2001), pp. 74, 81.Google Scholar
Kriese, M.D., Boismier, D.A., Moody, N.R., and Gerberich, W.W., Eng. Fract. Mech. 61, 1 (1998).Google Scholar
Abdul-Baqi, A. and Giessen, E. van der, J. Mater. Res. 16, 1396 (2001).CrossRefGoogle Scholar
Abdul-Baqi, A. and Giessen, E. van der, Thin Solid Films 381, 143 (2001).CrossRefGoogle Scholar
Soloukhin, V.A., Posthumus, W., Brokken-Zijp, J.C.M., and With, G. de, Polymer 43, 6169 (2002).Google Scholar
Malzbender, J. and With, G. de, J. Non-Cryst. Solids 275, 137 (2000).CrossRefGoogle Scholar
Malzbender, J. and With, G. de, Surf. Coat. Technol. 127, 266 (2000).CrossRefGoogle Scholar
Kazmanli, M.K., Rother, B., Urgen, M., and Mitterer, C., Surf. Coat. Technol. 107, 65 (1988).Google Scholar
Lawn, B.R. and Swain, M.V., J. Mater. Sci. 10, 113 (1975).Google Scholar
Lawn, B.R. and Fuller, E.R., J. Mater. Sci. 10, 2016 (1975).Google Scholar