Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T22:33:50.518Z Has data issue: false hasContentIssue false

Superconducting Ba0.6K0.4BiO3: Thin film preparation by RF magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

C.J. Hou
Affiliation:
Center for Materials Science and Engineering, The University of Texas at Austin, Austin, Texas 78712-1062
H. Steinfink
Affiliation:
Center for Materials Science and Engineering, The University of Texas at Austin, Austin, Texas 78712-1062
L. Rabenberg
Affiliation:
Center for Materials Science and Engineering, The University of Texas at Austin, Austin, Texas 78712-1062
Claude Hilbert
Affiliation:
Computer Physics Laboratory, Microelectronics and Computer Technology Corporation, 12100 Technology Boulevard, Austin, Texas 78727
Harry Kroger
Affiliation:
Computer Physics Laboratory, Microelectronics and Computer Technology Corporation, 12100 Technology Boulevard, Austin, Texas 78727
Get access

Abstract

Superconducting Ba0.6K0.4BiO3 thin films with transition temperatures up to 25 K have been successfully grown on SrTiO3 substrates using RF magnetron sputtering and postgrowth oxygen annealing. Systematic variation of the sputtering process parameters showed that optimum films can be grown on substrates heated to 400 °C in a 10 mTorr atmosphere containing 96% Ar and 4% O2 and using a target containing Ba, K, and Bi in ratios of 0.6:1.2:1.4. High transition temperature superconductivity was observed only in highly oriented, crystalline films having the ideal stoichiometry, Ba0.6K0.4BiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mattheiss, L. F., Gyorgy, E. M., and Johnson, D.W. Jr., Phys. Rev. B 37, 3745 (1988).Google Scholar
2Wignacourt, J. P., Swinnea, J. S., Steinfink, H., and Goodenough, J. B., Appl. Phys. Lett. 53, 1753 (1988).CrossRefGoogle Scholar
3Schneemeyer, L. F., Thomas, J. K., Siegrist, T., Batlogg, B., Rupp, L. W., Opila, R.L., Cava, R.J., and Murphy, D.W., Nature 335, 421 (1988).CrossRefGoogle Scholar
4Hinks, D. G., Dabrowski, B., Jorgensen, D., Mitchell, A. W., Richards, D. R., Pei, S., and Shi, D., Nature 333, 836 (1988).CrossRefGoogle Scholar
5Hinks, D. G., Richards, D.R., Dabrowski, B., Mitchell, A.W., Jorgensen, J. D., and Marx, D.T., Physica C 156, 477 (1988).Google Scholar
6Hinks, D. G., Mitchell, A. W., Zheng, Y., Richards, D. R., and Dabrowski, B., Appl. Phys. Lett. 54, 1585 (1989).CrossRefGoogle Scholar
7Sato, H., Tajima, S., Tagaki, H., and Uchida, S., Physica C162164, 1121 (1989).CrossRefGoogle Scholar
8Sato, H., Tajima, S., Tagaki, H., and Uchida, S., Nature 338, 241 (1989).CrossRefGoogle Scholar
9Sato, H., Tagaki, H., and Uchida, S., Physica C 169, 391 (1990).Google Scholar
10Takahashi, K., Iyori, M., Kamino, M., Usuki, T., Yoshisato, Y., and Nakano, S., Jpn. J. Appl. Phys. 30, L1480 (1991).Google Scholar
11Enomoto, Y., Murakami, T., and Moriwaki, K., Jpn. J. Appl. Phys. 28, L1355 (1989).Google Scholar
12Hellman, E.S., Hartford, E.H., and Palstra, T.T.M., Physica C 162164, 633 (1989).CrossRefGoogle Scholar
13Hellman, E.S., Hartford, E.H., and Fleming, R.M., Appl. Phys.Lett. 55, 2120 (1989).CrossRefGoogle Scholar
14Hellman, E. S. and Hartford, E. H., J. Vac. Sci. Technol. B 8, 332 (1990).CrossRefGoogle Scholar
15Hellman, E.S., Hartford, E.H., and Gyorgy, E. M., Appl. Phys. Lett. 58, 1335 (1991).CrossRefGoogle Scholar
16Moon, B.M., Platt, C.E., Schweinfurth, R.A., and Harlingen, D.J. Van, Appl. Phys. Lett. 59, 1905 (1991).CrossRefGoogle Scholar
17Hou, C.J., Fink, R. L., Hilbert, C., and Kroger, H., Appl. Phys. Lett. 60, 1262 (1992).Google Scholar