Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:10:12.308Z Has data issue: false hasContentIssue false

Superconducting characteristics and the thermal stability of tungsten-based amorphous thin films

Published online by Cambridge University Press:  31 January 2011

Seiichi Kondo
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-03, Japan
Get access

Abstract

Superconducting characteristics and the thermal stability of sputtered, tungsten-based, amorphous thin films are investigated. Electronic properties and crystalline structures are analyzed as a function of the metalloid content in the films. It is well known that the superconducting Tc of a bulk crystalline tungsten is 0.01 K, which is one of the lowest transition temperatures among the superconducting metals. We have found that the W film containing 5 to 70 at. % metalloids exhibits a great enhancement in Tc. In the region of 15 to 35 at. % metalloids, the Tc shows the maximum of 5.0 K, and the transition from normal to superconducting state occurs very sharply. SEM observation together with x-ray diffraction analysis indicates that these films are amorphous in structure. The electrical resistivity is about 150 μΩ-cm, and shows little temperature dependence from Tc to 300 K. In addition, the W–Si amorphous superconductor is thermally very stable after annealing at 700 °C, but the W–Ge amorphous alloy crystallizes at 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iwata, S., Yamamoto, N., Kobayashi, N., and Terada, T., IEEE Trans. Electron Devices ED-31, 1171 (1984).Google Scholar
2.Suzuki, M., Kobayashi, N., Mukai, K., and Kondo, S., J. Electrochem. Soc. 137, 3213 (1990).CrossRefGoogle Scholar
3.Gibson, J. W. and Hein, R. A., Phys. Rev. Lett. 12, 688 (1964).CrossRefGoogle Scholar
4.Bond, W. L., Cooper, A. S., Andres, K., Hull, G. W., Geballe, T. H., and Matthias, B. T., Phys. Rev. Lett. 15, 260 (1965).CrossRefGoogle Scholar
5.Basavaiah, S. and Pollack, S. R., J. Appl. Phys. 39, 5548 (1968).CrossRefGoogle Scholar
6.Petroff, P. M. and Reed, W. A., Thin Solid Films 21, 73 (1974).CrossRefGoogle Scholar
7.Hardy, G. F. and Hulm, J. K., Phys. Rev. 93, 1004 (1954).CrossRefGoogle Scholar
8.Collver, M. M. and Hammond, R. H., Phys. Rev. Lett. 30, 92 (1973).CrossRefGoogle Scholar
9.Inoue, A., Sakai, S., Kimura, H., Masumoto, T., and Hoshi, A., Scripta Metall. 14, 235 (1980).CrossRefGoogle Scholar
10.Flasck, J., Wood, J., Edelstein, A. S., Keem, J. E., and Missell, F. P., Solid State Commun. 44, 649 (1982).CrossRefGoogle Scholar
11.Mooij, J. H., Phys. Status Solidi (a) 17, 521 (1973).CrossRefGoogle Scholar
12.Thornton, J. A. and Hoffman, D. W., Thin Solid Films 171, 5 (1989).CrossRefGoogle Scholar
13.Matthias, B. T., in Progress in Low Temperature Physics, edited by Gorter, C. J. (North-Holland, Amsterdam, 1957), Vol. 2, p. 140.Google Scholar
14.Inoue, A. and Masumoto, T., Sci. Rep. RITU A29, 305 (1981).Google Scholar
15.Samsonov, G. V., in Plenum Press Handbooks of High-Temperature Materials, No. 2, Properties Index (Plenum Press, New York, 1964), p. 377.Google Scholar