Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T03:38:29.852Z Has data issue: false hasContentIssue false

Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior

Published online by Cambridge University Press:  30 April 2014

Chi-Hsiu Chang
Affiliation:
Peter A. Rock Thermochemistry Laboratory at NEAT ORU, University of California, Davis, California; and Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Ricardo H.R. Castro*
Affiliation:
Peter A. Rock Thermochemistry Laboratory at NEAT ORU, University of California, Davis, California; and Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: rhrcastro@ucdavis.edu
Get access

Abstract

This work presents experimental data on the surface and grain boundary energies of tin dioxide nanoparticles at room temperature and high temperature conditions (quenched from 1300 °C), and a discussion of impacts on the fundamental understanding of the nondensification mechanism of SnO2 during sintering. The results were obtained using a combination of water adsorption microcalorimetry, high-temperature oxide melt drop solution calorimetry, and scanning electron transmission microscopy. At room temperature, the average surface and grain boundary energies of anhydrous SnO2 were 1.20 ± 0.02 and 0.71 ± 0.08 J m−2, respectively. At high temperature, SnO2 showed a surface energy of 0.94 ± 0.03 J m−2. This remarkable decrease was attributed to the lower oxygen pressure and was associated with a decrease in contact angle during sintering. This observation indicates a moderate but significant thermodynamic reason behind nondensification behavior of SnO2 in addition to common kinetic descriptions: high sintering temperatures and atmospheres cause smaller dihedral angles that decrease sintering stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yamazoe, N.: New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7 (1991).Google Scholar
Gopel, W. and Schierbaum, K.D.: SnO2 sensors: Current status and future prospects. Sens. Actuators B 26(1–3), 1 (1995).Google Scholar
Park, C.O. and Akbar, S.A.: Ceramics for chemical sensing. J. Mater. Sci. 38(23), 4611 (2003).Google Scholar
Gouvea, D., Smith, A., Bonnet, J.P., and Varela, J.A.: Densification and coarsening of SnO2-based materials containing manganese oxide. J. Eur. Ceram. Soc. 18(4), 345 (1998).Google Scholar
Varela, J.A., Whittemore, O.J., and Longo, E.: Pore-size evolution during sintering of ceramic oxides. Ceram. Int. 16(3), 177 (1990).CrossRefGoogle Scholar
Leite, E.R., Cerri, J.A., Longo, E., Varela, J.A., and Paskocima, C.A.: Sintering of ultrafine undoped SnO2 powder. J. Eur. Ceram. Soc. 21(5), 669 (2001).Google Scholar
Maitre, A., Beyssen, D., and Podor, R.: Modelling of the grain growth and the densification of SnO2-based ceramics. Ceram. Int. 34(1), 27 (2008).Google Scholar
Batzill, M., Katsiev, K., Burst, J., Diebold, U., Chaka, A., and Delley, B.: Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties. Phys. Rev. B 72(16), 165414–1 (2005).Google Scholar
Bergermayer, W. and Tanaka, I.: Reduced SnO2 surfaces by first-principles calculations. Appl. Phys. Lett. 84(6), 909 (2004).Google Scholar
Navrotsky, A.: Calorimetry of nanoparticles, surfaces, interfaces, thin films, and multilayers. J. Chem. Thermodyn. 39(1), 1 (2007).CrossRefGoogle Scholar
McHale, J.M., Auroux, A., Perrotta, A.J., and Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277(5327), 788 (1997).Google Scholar
McHale, J.M., Navrotsky, A., and Perrotta, A.J.: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline gamma-Al2O3 and alpha-Al2O3 . J. Phys. Chem. B 101(4), 603 (1997).Google Scholar
Castro, R.H.R., Ushakov, S.V., Gengembre, L., Gouvea, D., and Navrotsky, A.: Surface energy and thermodynamic stability of gamma-alumina: Effect of dopants and water. Chem. Mater. 18(7), 1867 (2006).Google Scholar
Costa, G.C.C., Ushakov, S.V., Castro, R.H.R., Navrotsky, A., and Muccillo, R.: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22(9), 2937 (2010).Google Scholar
Castro, R.H.R. and Wang, B.: The hidden effect of interface energies in the polymorphic stability of nanocrystalline titanium dioxide. J. Am. Ceram. Soc. 94(3), 918 (2011).Google Scholar
Ma, Y., Castro, R.H.R., Zhou, W., and Navrotsky, A.: Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J. Mater. Res. 26(07), 848 (2011).Google Scholar
Castro, R.H.R. and Quach, D.V.: Analysis of anhydrous and hydrated surface energies of gamma-Al2O3by water adsorption microcalorimetry. J. Phys. Chem. C 116(46), 24726 (2012).Google Scholar
Asay, D.B. and Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109(35), 16760 (2005).Google Scholar
Deacon, P.R., Mahon, M.F., Molloy, K.C., and Waterfield, P.C.: Synthesis and characterisation of tin(II) and tin(IV) citrates. J. Chem. Soc. Dalton Trans. 1997(20), 3705 (1997).Google Scholar
Liu, W., Farrington, G.C., Chaput, F., and Dunn, B.: Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process. J. Electrochem. Soc. 143(3), 879 (1996).Google Scholar
Leite, E.R., Weber, I.T., Longo, E., and Varela, J.A.: A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12(13), 965 (2000).Google Scholar
Ushakov, S.V. and Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87(16), 164103–1 (2005).Google Scholar
Rufner, J., van Benthem, K., and Castro, R.H.R.: Synthesis and sintering behavior of ultrafine (<10 nm) magnesium aluminate spinel nanoparticles. J. Am. Ceram. Soc. 96(7), 2077 (2013).Google Scholar
Castrillon, S.R-V., Giovambattista, N., Aksay, I.A., and Debenedetti, P.G.: Structure and energetics of thin film water. J. Phys. Chem. C 115(11), 4624 (2011).CrossRefGoogle Scholar
Bandura, A.V., Sofo, J.O., and Kubicki, J.D.: Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations. J. Phys. Chem. B 110, 8386 (2006).Google Scholar
Batzill, M., Bergermayer, W., Tanaka, I., and Diebold, U.: Tuning the chemical functionality of a gas sensitive material: Water adsorption on SnO2(101). Surf. Sci. 600(4), 29 (2006).Google Scholar
Hahn, K.R., Tricoli, A., Santarossa, G., Vargas, A., and Baiker, A.: First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions. Langmuir 28(2), 1646 (2012).Google Scholar
Santarossa, G., Hahn, K., and Baiker, A.: Free Energy and electronic properties of water adsorption on the SnO2(110) surface. Langmuir 29(18), 5487 (2013).Google Scholar
Al-Abadleh, H.A. and Grassian, V.H.: FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 19(2), 341 (2003).Google Scholar
Oviedo, J.G. and Gillan, M.J.: Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci. 463, 93 (2000).Google Scholar
Chiang, Y-M., Birnie, D.P., and Kingery, W.D.: Physical ceramics (J. Wiley, New York, 1997).Google Scholar
Terwilliger, C.D. and Chiang, Y.M.: Measurements of excess enthalpy in ultrafine-grained titanium-dioxide. J. Am. Ceram. Soc. 78(8), 2045 (1995).Google Scholar
Chang, C.H., Rufner, J.F., van Benthem, K., and Castro, R.H.R.: Design of desintering in tin dioxide nanoparticles. Chem. Mater. 25(21), 4262 (2013).Google Scholar
Lange, F.F.: Densification of powder compacts: An unfinished story. J. Eur. Ceram. Soc. 28(7), 1509 (2008).Google Scholar
Kellett, B.J. and Lange, F.F.: Thermodynamics of densification: I sintering of simple particle arrays, equilibrium-configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 72(5), 725 (1989).Google Scholar
Kamp, B., Merkle, R., Lauck, R., and Maier, J.: Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure. J. Solid State Chem. 178(10), 3027 (2005).Google Scholar
Hoenig, C.L. and Searcy, A.W.: Knudsen and Langmuir evaporation studies of stannic oxide. J. Am. Ceram. Soc. 49(3), 128 (1966).Google Scholar
Tsoga, A. and Nikolopoulos, P.: Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol %). J. Mater. Sci. 31(20), 5409 (1996).Google Scholar