Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T12:08:04.548Z Has data issue: false hasContentIssue false

Surface and optical property modifications of self-assembled CdTe/ZnTe quantum dots caused by thermal treatment

Published online by Cambridge University Press:  31 January 2011

H.S. Lee
Affiliation:
Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
H.L. Park
Affiliation:
Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
T.W. Kim*
Affiliation:
Advanced Semiconductor Research Center, Division of Electronics and Computer Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Korea
*
a)Address all correspondence to this author. e-mail: twk@hanyang.ac.kr
Get access

Abstract

Atomic force microscopy images showed that the size of the CdTe quantum dots (QDs) slightly increased with increasing annealing temperature up to 350 °C. Photoluminescence spectra showed that the excitonic peak corresponding to the interband transition from the ground electronic subband to the ground heavy-hole band (E1HH1) in the CdTe/ZnTe QDs annealed at 350 °C was shifted to lower energy compared with that in as-grown CdTe/ZnTe QDs. The full width at half-maximum of the E1HH1 transition peak in the CdTe/ZnTe QDs annealed at 350 °C decreased resulting from the improvement of the crystallinity for the annealed CdTe QDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Leobandung, E., Guo, L., Wang, Y.Chou, S.Y.: Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K. Appl. Phys. Lett. 67, 938 1995CrossRefGoogle Scholar
2Medeiros-Ribeiro, G., Leonard, D.Petroff, P.M.: Electron and hole energy levels in InAs self-assembled quantum dots. Appl. Phys. Lett. 66, 1767 1995CrossRefGoogle Scholar
3Cao, H., Xu, J.Y., Xiang, W.H., Ma, Y., Chang, S-H., Ho, S.T.Solomon, G.S.: Optically pumped InAs quantum dot microdisk lasers. Appl. Phys. Lett. 76, 3519 2000CrossRefGoogle Scholar
4Park, G., Shckekin, O.B., Huffaker, D.L.Deppe, D.G.: Low-threshold oxide-confined 1.3-μm quantum-dot laser. IEEE Photonics Technol. Lett. 13, 230 2000CrossRefGoogle Scholar
5Lee, S-W., Hirakawa, K.Shimada, Y.: Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures. Appl. Phys. Lett. 75, 1428 1999CrossRefGoogle Scholar
6Jiang, L., Li, S.S., Yeh, N-T., Chyi, J-I., Ross, C.E.Jones, K.S.: In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K. Appl. Phys. Lett. 82, 1986 2003CrossRefGoogle Scholar
7Leonard, D., Pond, K.Petroff, P.M.: Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 50, 11687 1994CrossRefGoogle ScholarPubMed
8Xie, Q., Chen, P., Kalburge, A., Ramachandran, T.R., Nayfonov, A., Konkar, A.Maduhukar, A.: Realization of optically active strained InAs island quantum boxes on GaAs(100) via molecular beam epitaxy and the role of island induced strain fields. J. Cryst. Growth 150, 357 1995CrossRefGoogle Scholar
9Xie, Q., Kobayashi, N.P., Ramachandran, T.R., Kalburge, A., Chen, P.Madhukar, A.: Strained coherent InAs quantum box islands on GaAs(100): Size equalization, vertical self-organization, and optical properties. J. Vac. Sci. Technol., B 14, 2203 1996CrossRefGoogle Scholar
10Bimberg, D., Grundmann, M.Ledentsov, N.N.: Quantum Dot Heterostructures Wiley New York 1998Google Scholar
11Karczewski, G., Maćkowski, S., Kutrowski, M., Wojtowicz, T.Kossut, J.: Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl. Phys. Lett. 74, 3011 1999CrossRefGoogle Scholar
12Perret, N., Morris, D., Franchomme-Fossé, L., Côté, R., Fafard, S., Aimez, V.Beauvais, J.: Origin of the inhomogenous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots. Phys. Rev. B 62, 5092 2000CrossRefGoogle Scholar
13Babinski, A., Jasinski, J., Bozek, R., Szepielow, A.Baranowski, J.W.: Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79, 2576 2001CrossRefGoogle Scholar
14Kim, J.S., Lee, J.H., Hong, S.U., Han, W.S., Kwack, H-S., Kim, J.H.Oh, D.K.: Structural and optical properties of shape-engineered InAs quantum dots. J. Appl. Phys. 94, 2486 2003CrossRefGoogle Scholar
15Lee, H.S., Lee, J.Y., Kim, T.W.Kim, M.D.: Effect of thermal annealing on the microstructural and optical properties of vertically stacked InAs/GaAs quantum dots embedded in modulation-doped heterostructures. J. Appl. Phys. 94, 6354 2003CrossRefGoogle Scholar
16Mackowski, S., Smith, L.M., Jackson, H.E., Heiss, W., Kossut, J.Karczewski, G.: Optical properties of annealed CdTe self-assembled quantum dots. Appl. Phys. Lett. 83, 254 2003CrossRefGoogle Scholar
17Mackowski, S., Gurung, T., Jackson, H.E., Smith, L.M., Heiss, W., Kossut, J.Korczewski, G.: Sensitivity of exciton spin relaxation in quantum dots to confining potential. Appl. Phys. Lett. 86, 103101 2005CrossRefGoogle Scholar
18Lee, H.S., Lee, K.H., Park, H.L., Kim, T.W.Kim, Y-H.: Effect of thermal annealing on the interband transitions and activation energies of CdTe/ZnTe quantum dots. J. Appl. Phys. 98, 023702 2005CrossRefGoogle Scholar
19Hartmann, J.M., Feuillet, G., Charleux, M.Mariette, H.: Atomic layer epitaxy of CdTe and MnTe. J. Appl. Phys. 79, 3035 1996CrossRefGoogle Scholar
20Jang, M.S., Oh, S.H., Lee, H.S., Choi, J.C., Park, H.L., Kim, T.W., Choo, D.C.Lee, D.U.: Formation mechanism of CdTe self-assembled quantum dots embedded into ZnTe barriers. Appl. Phys. Lett. 81, 993 2002CrossRefGoogle Scholar
21Calvo, V., Magnea, N., Taliercio, T., Lefebvre, P., Allègre, J.Mathieu, H.: Optical properties versus growth conditions of CdTe submonolayers inserted in ZnTe quantum wells. Phys. Rev. B 58, 15736 1998CrossRefGoogle Scholar
22Kim, J.S., Lee, J.H., Hong, S.U., Han, W.S., Kwack, H-S., Kim, J.H.Oh, D.K.: Structural and optical properties of shape-engineered InAs quantum dots. J. Appl. Phys. 94, 2486 2003CrossRefGoogle Scholar
23Leon, R., Kim, Y., Jagadish, C., Gai, M., Zou, J.Cockayne, D.J.H.: Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69, 1888 1996CrossRefGoogle Scholar
24Xu, S.J., Wang, X.C., Chua, S.J., Wang, C.H., Fan, W.J., Jiang, J.Xie, X.G.: Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 72, 3335 1998CrossRefGoogle Scholar