Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T22:40:09.389Z Has data issue: false hasContentIssue false

Surface biofunctionalization of materials by amine groups

Published online by Cambridge University Press:  03 March 2011

R.J. Martín-Palma*
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
M. Manso
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
J. Pérez-Rigueiro
Affiliation:
Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
J.P. García-Ruiz
Affiliation:
Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
J.M. Martínez-Duart
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
*
a) Address all correspondence to this author. e-mail: rauljose.martin@uam.es
Get access

Abstract

A novel deposition technique for the bio-functionalization by amine groups of surfaces of materials is presented. The process is based on the activation at high temperature of 3-aminopropyltrietoxysilane (3-APTS) molecules in vapor phase immediately before impinging on the substrate. Materials such as silicon, porous silicon, and titanium were chosen to demonstrate the validity of the process on surfaces with very different chemical properties. The effect of the activation process on the surface was evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD). In addition, the reactivity under mild reaction conditions of the functionalized surfaces was determined by using a fluorescent reagent that specifically reacts with amine groups. From the experimental results it can be concluded that the proposed activation method induces amino-group fixation on the surface of materials, ranging from semiconductors to metals and insulating materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wadhwa, G.: Biochips and biocomputers—future of computing and medicine. J. Sci. Ind. Res. 49, 486 (1990).Google Scholar
2.Williams, R.A. and Blanch, H.W.Covalent immobilization of protein monolayers for biosensor applications. Biosens. Bioelectron. 9, 159 (1994).CrossRefGoogle ScholarPubMed
3.Mirkin, C.A.: A DNA-based methodology for preparing nanocluster circuits, arrays and diagnostic materials. MRS Bull. 25, 43 2000.CrossRefGoogle Scholar
4.Jenney, C.R. and Anderson, J.M.: Alkylsilane-modified surfaces: Inhibition of human macrophage adhesion and foreign body giant cell formation. J. Biomed. Mater. Res. 46, 11 (1999).3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
5.Lind, M., Overgaard, S., Soballe, K., Nguyen, T., Ongpipattankul, B. and Bunger, C.: Transforming growth factor-beta 1 enhances bone healing to unloaded tricalcium phosphate coated implants: An experimental study in dogs. J. Orthop. Res. 14, 343 (1996).CrossRefGoogle ScholarPubMed
6.Mann, B.K., Tsai, A.T., Scott-Burden, T. and West, J.L.: Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials 20, 2281 (1999).CrossRefGoogle ScholarPubMed
7.Blawas, A.S. and Reichert, W.M.: Protein patterning. Biomaterials 19, 595 (1998).CrossRefGoogle ScholarPubMed
8.Sokoll, R., Hobert, H. and Schmuck, I.: Thermal desorption and infrared studies of butylamine adsorbed on SiO2, Al2O3 and CaO. J. Chem. Soc. Faraday Trans. 82, 3391 (1986).CrossRefGoogle Scholar
9.Puggeli, M., Gabrielli, G. and Caminati, G.: Langmuir-Blodgett monolayers and multilayers of stearic acid and stearyl amine. Thin Solid Films 244, 1050 (1994).CrossRefGoogle Scholar
10.Müller, W., Ringsdorf, H., Rump, E., Wildburg, G., Zhang, X., Angermaier, L., Knoll, W., Liley, M. and Spinke, J.: Attempts to mimic docking processes of the immune system: Recognition-induced formation of protein multilayers. Science 262, 1706 (1993).CrossRefGoogle ScholarPubMed
11.Kane, R.S., Takayama, S., Ostumi, E., Ingber, D.E. and Whitesides, G.M.: Patterning proteins and cells using soft litography. Biomaterials 20, 2363 (1999).CrossRefGoogle Scholar
12.Weetall, H.H. In Methods in Enzymology: 44, Mosbach, K. (ed.), (Academic Press, NY), pp. 134138.Google Scholar
13.Flounders, A.W., Brandon, D.L. and Bates, A.H.: Immobilization of thiabendazole-specific monoclonal antibodies to silicon substrates via aqueous silanization. Appl. Biochem. Biotechnol. 50, 265 (1995).CrossRefGoogle Scholar
14.Plueddemann, E.Silane coupling agents, 2nd ed., (Plenum Press, NY, 1991), pp. 1250.CrossRefGoogle Scholar
15.Jönsson, U., Olofsson, G., Malmqvist, M. and Rönnberg, I.: Chemical vapour deposition of silanes. Thin Solid Films 124, 117 (1985).CrossRefGoogle Scholar
16.Basyuk, V.A. and Chuiko, A.A.: Infrared spectra of amide products formed during chemisorption of alpha-amino acid vapors on the surface of gamma-aminopropyl-aerosil. Zhurnal Prikladhoi Spektroskopii 52, 935 (1990).Google Scholar
17.Sigrist, H., Collioud, A., Clémence, J-F., Gao, H., Luginbühl, R., Sänger, M. and Sundarababu, G.: Surface immobilization of biomolecules by light. Opt. Eng. 34, 2339 (1995).CrossRefGoogle Scholar
18.Rexová-Benková, L., Stratilová, E. and Capka, M.: The effects of the porosity of a support and of attachment on the mode of action of immobilized endopolygalacturonase. Biocatalysis 4, 219 (1990).CrossRefGoogle Scholar
19.Manso-Silván, M., Martín-Palma, R.J., Pérez-Rigueiro, J. and Martínez-Duart, J.M.Surface functionalisation by the condensation of hybrid titanate–amino sols. Thin Solid Films 415, 253 (2002).CrossRefGoogle Scholar
20.Piqué, A., Wu, P., Ringeisen, B.R., Bubb, D.M., Melinger, J.S., McGill, R.A. and Chrisey, D.B.: Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Appl. Surf. Sci. 186, 408 (2002).CrossRefGoogle Scholar
21.Ishaug-Riley, S.L., Okun, L.E., Prado, G., Applegate, M.A. and Ratcliffe, A.: Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 20, 2245 (1999).CrossRefGoogle ScholarPubMed
22.Martín-Palma, R.J., Pérez-Rigueiro, J. and Martínez-Duart, J.M.: Study of carrier transport in metal/porous silicon/Si structures. J. Appl. Phys. 86, 6911 (1999).CrossRefGoogle Scholar
23.Volpe, C. Della and Siboni, S.: Some reflections on acid–base solid surface free energy theories. J. Colloid Interface Sci. 195, 121 (1997).CrossRefGoogle ScholarPubMed
24.Ingersoll, C.M. and Bright, F.V.: Anal. Chem. 69, 403A (1997).CrossRefGoogle Scholar
25.Martín-Palma, R.J., Pascual, L., Herrero, P. and Martínez-Duart, J.M.: Direct determination of grain sizes, lattice parameters and mismatch of porous silicon. Appl. Phys. Lett. 81, 25 (2002).CrossRefGoogle Scholar
26.Lin, V.S-Y., Motesharei, K., Dancil, K-P.S., Sailor, M.J. and Ghadiri, M.R.: A porous silicon-based optical interferometric biosensor. Science 278, 840 (1997).CrossRefGoogle ScholarPubMed