Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T06:57:57.884Z Has data issue: false hasContentIssue false

Surface crystallographic structure compatibility between substrates and high Tc (YBCO) thin films

Published online by Cambridge University Press:  03 March 2011

Ruyan Guo
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
A.S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
L.E. Cross
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

A review and some case studies on the interatomic distances of candidate substrates in comparison to the high Tc superconductor (HTSC) phase YBa2Cu3O7−δ (YBCO) is presented, in an attempt to enhance the basis for substrate selection for YBCO film epitaxy. This preliminary study was carried out by examining a variety of interatomic distances in the structure rather than merely matching the lattice parameters. Interatomic structure matching planes of selected YBCO orientations in contact with substrates were identified. The surface termination of the substrate was found to be a crucial parameter in determining the oriented or epitaxial growth. Possible composition dependence of the orientation of the films at the nucleation stage was also anticipated depending on the comparison. Several currently most commonly used substrates are discussed in some detail.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Perrin, A. and Sergent, M., Studies of High Temperature Superconductors, edited by Narlikar, A. (Nova Science Publishers, Commack, NY, 1991), Vol. 7.Google Scholar
2Roy, R., Guo, R., Bhalla, A. S., and Cross, L. E., J. Vac. Sci. Technol. A 12 (2), 269 (1994).CrossRefGoogle Scholar
3Barker, T. V., J. Chem. Soc. Trans. 89, 1120 (1906); Mineral. Mag. 14, 235 (1907); and Z. Kristallogr. 45, 1 (1908).CrossRefGoogle Scholar
4Royer, L., Bull. Soc. Fr. Mineral. Crist. 51, 7 (1928).Google Scholar
5Pashley, D. W., Epitaxial Growth, edited by Matthews, J. W. (Academic Press, New York, San Francisco, London, 1975).Google Scholar
6The Inorganic Crystal Structure Database (ICSD), copyrighted by Fachinformationszentrum-Karlsruhe, D-7514 Eggenstein-Leopoldshafen 2, Karlsruhe, West Germany.Google Scholar
7Wong-Ng, W., Gayle, F. W., Kaiser, D. L., Watkins, S. F., and Fronczek, F. R., Phys. Rev. B 41 (7), 42204223 (1990).CrossRefGoogle Scholar
8Guo, R. and Smith, D. K. (unpublished research).Google Scholar
9Guo, R., Povoa, J., and Bhalla, A. S. (unpublished research).Google Scholar
10Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., and Hirata, K., Appl. Phys. Lett. 53, 2232 (1988).CrossRefGoogle Scholar
11Meyer, G. M., Nelmes, R. J., and Hutton, J., Ferroelectrics 21, 461462 (1978).Google Scholar
12Fedulov, S. A., Venevtsev, Y. N., and Dzhmukhadze, D. F., Kristallografiya 7, 408411 (1962).Google Scholar
13Diehl, R. and Brandt, G., Mater. Res. Bull. X, 8590 (1975).CrossRefGoogle Scholar
14Brusset, H., Gillier-Pandraud, H., and Berdot, J. L., Bull. Societe Chimique de France 1967, 28862890 (1967).Google Scholar
15Vousden, P., Acta Crystallogr. 4, 68 (1951); Acta Crystallogr. 4, 373 (1951).CrossRefGoogle Scholar
16Moeller, T. and King, G. L., J. Am. Chem. Soc. 75, 60606061 (1953).CrossRefGoogle Scholar
17Abrahams, S. C. and Marsh, P., Acta Crystallogr. B 42, 6168 (1986).CrossRefGoogle Scholar
18Ludekens, W. L. W. and Welch, A. J. E., Acta Crystallogr. 5, 841 (1952).CrossRefGoogle Scholar
19Knox, K., Acta Crystallogr. 14, 583585 (1961).CrossRefGoogle Scholar
20Wittmann, U., Rauser, G., and Kemmler-Sack, S., Z. Anorg. Allg. Chemie 482, 143153 (1981).CrossRefGoogle Scholar
21DeVries, R.C. and Roy, R., J. Am. Chem. Soc. 75, 24792484 (1953).CrossRefGoogle Scholar
22Megaw, H. D., Proceedings of the Physical Society, London 58, 133152 (1946).CrossRefGoogle Scholar
23Schmahl, N. G., Barthel, J., and Eikerling, G. F., Z. Anorg. Allg. Chemie 332, 230237 (1964).CrossRefGoogle Scholar
24Thompson, P., Cox, D. E., and Hastings, J. B., J. Appl. Crystallogr. 20, 7983 (1987).CrossRefGoogle Scholar
25Brauer, G. and Gradinger, H., Z. Anorg. Allg. Chemie 277, 8995 (1954).CrossRefGoogle Scholar
26Batchelder, D. N. and Simmons, R. O., J. Chem. Phys. 41, 23242329 (1964).CrossRefGoogle Scholar
27Horiuchi, H., Schultz, A. J., Leung, P. C., and Williams, J. M., Acta Crystallogr. 40, 367372 (1984).CrossRefGoogle Scholar
28Wright, A. F. and Lehmann, M. S., J. Solid State Chem. 36, 371380 (1981).CrossRefGoogle Scholar
29Vidal-Valat, G., Vidal, J. P., Zeyen, C. M. E., and Kurki-Suonio, K., Acta Crystallogr. B 35, 15841590 (1979).CrossRefGoogle Scholar
30Oudalov, J. P., Daoudi, A., Joubert, J. C., leFlem, G., and Hagenmueller, P., Bull. Societe Chimique France 1970, 34083410 (1970).Google Scholar
31Kimata, M. and Ii, N., Neues Jahrbuch fur Mineralogie Abhandlungen (Band-NR) 143, 254267 (1982).CrossRefGoogle Scholar
32Korczak, P. and Raaz, F., Anzeiger der Oesterreichischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Basse 104, 383388 (1967).Google Scholar
33Uchikawa, H. and Tsukiyama, K., J. Ceram. Assoc. Jpn. 73, 100104 (1965).CrossRefGoogle Scholar
34Hoerkner, W. and Miiller-Buschbaum, H., Z. Anorg. Allg. Chem. 451, 4044 (1979).CrossRefGoogle Scholar
35Amthauer, G., Guenzler, V., Hafner, S. S., and Reinen, D., Z. Kristallogr. 161, 167186 (1982).CrossRefGoogle Scholar
36Yamanaka, T. and Takeuchi, Y., Z. Kristallogr. 165, 6578 (1983).CrossRefGoogle Scholar
37Efremov, V. A., Chemaya, N. G., Trunov, V. K., and Pisarenko, V. F., Sov. Phys. Crystallogr. 33 (1), 1922 (1988).Google Scholar
38Feenstra, R., Boatner, L. A., Budai, J. D., Christen, D. K., Galloway, M. D., and Poler, D. P., Appl. Phys. Lett. 54, 1063 (1989).CrossRefGoogle Scholar
39Hwang, D. M., Venkatesan, T., Chang, C. C., Nazar, L., Wu, X. D., Inam, A., and Hegde, M. S., Appl. Phys. Lett. 54, 1702 (1989).CrossRefGoogle Scholar
40Oh, B., Naito, M., Arnason, S., Rosenthal, P., Barton, R., Beasley, M. R., Geballe, T. H., Hammond, R. H., and Kapitulnik, A., Appl. Phys. Lett. 51, 852 (1987).CrossRefGoogle Scholar
41Gao, Y., Merkle, K. L., Bai, G., Chang, H. L. M., and Lam, D. J., Ultramicroscopy 37, 326340 (1991).CrossRefGoogle Scholar
42Perrin, A., Karkut, M. G., Guilloux-Viry, M., and Sergent, M., Appl. Phys. Lett. 58 (4), 42 (1991).CrossRefGoogle Scholar
43Denhoff, M. W. and McCaffrey, J.P., J. Appl. Phys. 70 (7), 39863988 (1991).CrossRefGoogle Scholar
44Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S. R., Maley, M., Rollett, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett. 58, 21652167 (1991).CrossRefGoogle Scholar
45Boyce, J. B., Connell, G. A. N., Fork, D. K., Fenner, D. B., Char, K., Ponce, F. A., Bridges, F., Tramontana, J., Viano, A. M., Laderman, S. S., Taber, R. C., Tahara, S., and Geballe, T. H., SPIE 1187, 136147 (1989).Google Scholar
46Guo, J., Ellis, D. E., and Lam, D. L., Phys. Rev. B 45 (23), 1364713656 (1992).CrossRefGoogle Scholar
47Xiong, G. C., Lian, G. J., Zhu, X., Li, J., Li, Y. J., and Gan, Z. Z., IEEE Trans. Appl. Superconductivity 3 (1), 1429 (1993).CrossRefGoogle Scholar
48Hartman, P. and Perdok, W. G., Acta Crystallogr. 8, 165 (1955).Google Scholar
49Burns, G. and Glazer, A. M., Space Groups for Solid State Scientists, 2nd ed. (Academic Press, New York, 1990).Google Scholar