Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:10:25.641Z Has data issue: false hasContentIssue false

Surface evolution of strained SrRuO3 films deposited at various temperatures on SrTiO3 (001) substrates

Published online by Cambridge University Press:  01 June 2006

Sang Ho Oh*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea; and Erich Schmid Institute, Austrian Academy of Sciences, A-8700 Leoben, Austria
Chan Gyung Park
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
*
a) Address all correspondence to this author. e-mail: shoh@mf.mpg.de
Get access

Abstract

Surface evolution was studied for strained SrRuO3 films with a nominal 75 nm thickness deposited at various substrate temperatures (650–850 °C). Epitaxial growth of the films was achieved on single TiO2-terminated SrTiO3 (001) substrates by using ion-beam sputtering. The surface morphology of the deposited films was investigated by scanning tunneling microscopy in ambient conditions, and their microstructure was characterized by transmission electron microscopy. The self-organized step-terrace structure was observed for the films deposited at lower than 800 °C, suggesting that the epitaxial growth proceeded by step-flow growth. In particular, each film showed characteristic surface evolutions pertinent to the misfit strain relaxation stage, mostly influenced by the moving segment of misfit dislocations threading up to the surface: surface undulations for the film at the initial stage of relaxation (deposited at 650 °C), circular growth spirals during the relaxation stage (700 °C), and well-ordered step-terrace structure after almost full development of misfit dislocations (750 and 800 °C).

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eom, C.B., Cava, R.J., Fleming, R.M., Philips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., Peck, W.F. Jr.: Single crystal epitaxial thin films of the isotropic metallic oxides Sr1− xCaxRuO3 (0 = x = 1). Science 258, 1799 (1992).CrossRefGoogle Scholar
2.Jia, Q.X., Wu, X.D., Foltyn, S.R., Tiwari, P.: Structural and electrical properties of Ba0.5Sr0.5TiO3 thin films with conductive SrRuO3 bottom electrodes. Appl. Phys. Lett. 66, 2197 (1995).CrossRefGoogle Scholar
3.Gausepohl, S.C., Lee, M., Antogonazza, L., Char, K.: Magnetoresistance probe of spatial current variations in high-Tc YBa2Cu3O7–SrRuO3–YBa2Cu3O7 Josephson junctions. Appl. Phys. Lett. 67, 1313 (1995).CrossRefGoogle Scholar
4.Yin, J., Liu, Z.G., Wu, Z.C.: Completely 〈111〉-textured growth and enhanced ferroelectric properties of Pb(Ta0.05Zr0.48Ti0.47)O3 films on Pt/TiO2/SiO2/Si(001) using SrRuO3 buffer layer. Appl. Phys. Lett. 75, 3396 (1999).Google Scholar
5.Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H.: Atomic control of the SrTiO3 crystal surface. Science 266, 1540 (1994).Google Scholar
6.Oh, S.H., Park, C.G.: Misfit strain relaxation by dislocations in SrRuO3/SrTiO3 (001) heteroepitaxy. J. Appl. Phys. 95, 4691 (2004).Google Scholar
7.Tanaka, M., Saito, R., Ueno, K., Harada, Y.: Large-angle convergent-beam electron-diffraction. J. Electron. Microsc. 29, 408 (1980).Google Scholar
8.Jiang, J.C., Tian, W., Pan, X-Q., Gan, Q., Eom, C.B.: Domain structure of epitaxial SrTiO3 thin films on miscut (001) SrTiO3 substrates. Appl. Phys. Lett. 72, 2963 (1998).Google Scholar
9.Oh, S.H., Park, C.G.: Microstructural accommodation of excess Ru in epitaxial SrRuO3 films. Philos. Mag. 83, 1307 (2003).CrossRefGoogle Scholar
10.Herranz, G., Martínez, B., Fontcuberta, J., Sánchez, F., Ferrater, C., García-Cuenca, M.V., Varela, M.: Enhanced electron-electron correlations in nanometric SrRuO3 epitaxial films. Phys. Rev. B 67, 174423 (2003).CrossRefGoogle Scholar
11.Choi, J., Eom, C.B., Rijnders, G., Rogalla, H., Blank, D.H.A.: Growth mode transition from layer by layer to step flow during the growth of heteroepitaxial SrRuO3 on (001) SrTiO3. Appl. Phys. Lett. 79, 1447 (2001).CrossRefGoogle Scholar
12.Rijnders, G., Blank, D.H.A., Choi, J., Eom, C.B.: Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth. Appl. Phys. Lett. 84, 505 (2004).Google Scholar
13.Herranz, G., Martínez, B., Fontcuberta, J., Sánchez, F., García-Cuenca, M.V., Varela, M.: Impact of microstructure on transport properties of nanometric epitaxial SrRuO3 films. Appl. Phys. Lett. 82, 85 (2003).Google Scholar
14.Herranz, G., Sánchez, F., Martínez, B., Fontcuberta, J., García-Cuenca, M.V., Ferrater, C., Varela, M.: Relevance of the 3D to 2D growth mode transition for the transport properties of nanometric SrRuO3 films. Mater. Sci. Eng. B 109, 221 (2004).CrossRefGoogle Scholar
15.Sánchez, F., García-Cuenca, M.V., Ferrater, C., Varela, M., Herranz, G., Martínez, B., Fontcuberta, J.: Transition from three- to two-dimensional growth in strained SrRuO3 films on SrTiO3 (001). Appl. Phys. Lett. 83, 902 (2003).CrossRefGoogle Scholar
16.Maria, J-P., McKinstry, H.L., Trolier-McKinstry, S.: Origin of preferential orthorhombic twinning in SrRuO3 epitaxial thin films. Appl. Phys. Lett. 76, 3382 (2000).CrossRefGoogle Scholar
17.Jiang, J.C., Pan, X.Q.: Structural phase transitions in epitaxial SrRuO3 thin films. Philos. Mag. Lett. 80, 271 (2000).CrossRefGoogle Scholar
18.Gan, Q., Rao, R.A., Eom, C.B., Garrett, J.M., Lee, M.: Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 72, 978 (1998).CrossRefGoogle Scholar