Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T15:36:58.940Z Has data issue: false hasContentIssue false

Surface modification of aluminum and chromium by ion implantation of nitrogen with a high current density ion implanter and plasma-source ion implantation

Published online by Cambridge University Press:  31 January 2011

Zoran Falkenstein
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545
Kevin C. Walter
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545
Michael A. Nastasi
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545
Donald J. Rej
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545
Nikolai V. Gavrilov
Affiliation:
Institute of Electrophysics, Ural Division of the RAS, 620049 Yekaterinburg, Russia
Get access

Abstract

Results of ion implantation of nitrogen into electrodeposited hard chromium and pure aluminum by a high-dose ion-beam source are presented and compared to plasma-source ion implantation. The large-area, high current density ion-beam source can be characterized, with respect to surface modification use, by a uniform emitted dose rate in the range of 1016 to 5 × 1017 N cm−2 min−1 over an area of <100 cm2 and with acceleration energies of 10–50 keV. The implantation range and retained dose (measured using ion-beam analysis), the surface hardness, coefficient of friction, and the change in the wear coefficient (measured by nanohardness indentation and pin-on-disk wear testing) that were obtained with an applied dose rate of ∼1.7 × 1017 N cm−2 min−1 at 25 kV are given, and they are compared to results obtained with plasma-source ion implantation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Walter, K.C., J. Vac. Sci. Technol. B12, 945 (1994).CrossRefGoogle Scholar
2.Walter, K.C., Dissertation, University of Wisconsin, Madison, WI (1993).Google Scholar
3.Conrad, J., J. Appl. Phys. 62, 777 (1987).CrossRefGoogle Scholar
4.Conrad, J.R., Dodd, R.A., Worzala, F.J., and Qiu, X., Surf. Coat. Technol. 36, 927 (1988).CrossRefGoogle Scholar
5.Nastasi, M., Elmoursi, A.A., Faehl, R.J., Hamdi, A.H., Henins, I., Malaczynski, G.W., Mantese, J.V., Munson, C., Qiu, X., Reass, W.A., Rej, D.J., Scheuer, J.T., Speck, C.E., Walter, K.C., and Wood, B.P., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-T., Harriott, L.R., and Sigmon, T.W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 455.CrossRefGoogle Scholar
6.Blawert, C., Mordike, B.L., and Weisheit, A., Surf. Coat. Technol. 93, 297 (1997).CrossRefGoogle Scholar
7.Davis, H.A., Remnev, G.E., Stinnett, R.W., and Yatsui, K., MRS Bull. 21(8), 58 (1996).CrossRefGoogle Scholar
8.Isakov, I.F., Kolodii, V.N., Opekunov, M.S., Matvienko, V.M., Pechenkin, S.A., Remnev, G.E., and Usov, Y.P., Vacuum 42, 159 (1991).CrossRefGoogle Scholar
9.Coll, B.F. and Sanders, D.M., Surf. Coat. Technol. 81, 42 (1996).CrossRefGoogle Scholar
10.Irie, M., Ohara, H., Tsujioka, M., and Nomura, T., Mater. Chem. Phys. 54, 317 (1998).CrossRefGoogle Scholar
11.Gavrilov, N.V., Mesyats, G.A., Radkovski, G.V., and Bersenev, V.V., Surf. Coat. Technol. 96, 81 (1997).CrossRefGoogle Scholar
12.Gavrilov, N.V., Nikulin, S.P., and Radkovski, G.V., Instrum. Exp. Technol. 39, 81 (1996).Google Scholar
13.Gavrilov, N.V., Mesyats, G.A., Nikulin, S.P., Radkovski, G.V., Elkind, A., Perry, A.J., and Treglio, J.R., J. Vac. Sci. Technol. A14, 1050 (1996).CrossRefGoogle Scholar
14.Tesmer, J.R. and Nastasi, M., in Handbook of Modern Ion Beam Material Analysis, edited by Tesmer, J.R. and Nastasi, M. (Mater. Res. Soc., Pittsburgh, PA, 1995).Google Scholar
15.Doolittle, L.R., Nucl. Instrum. Methods B9, 334 (1995).Google Scholar
16.Ziegler, J.F., Biersack, J.B., and Littmanrk, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
17.Blawert, C. and Mordike, B.L., Nucl. Instrum. Methods Phys. Res. B127/128, 873 (1997).CrossRefGoogle Scholar
18.Falkenstein, Z., Rej, D.J., and Gavrilov, N.V., in Proceedings of the 12th International Conference on High-Energy Particle Beams, BEAMS ′98.Google Scholar
19.Lavrentiev, V.I. and Pogrebnjak, A.D., Surf. Coat. Technol. 99, 24 (1998).CrossRefGoogle Scholar
20.Walter, K.C., Kern, K.T., Tesmer, J.R., Scarborough, W.K., Woodring, J.S., and Nastasi, M., Surf. Coat. Technol. 97, 250 (1997).CrossRefGoogle Scholar