Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:23:38.413Z Has data issue: false hasContentIssue false

Surface nucleation, domain growth mechanisms, and factors dominating superconducting properties in seeded melt grown YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

Donglu Shi
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
K. Lahiri
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
D. Qu
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
S. Sagar
Affiliation:
Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
V. F. Solovjov
Affiliation:
Department of Superconductivity, Institute for Metal Physics, 252142 Kiev, Ukraine
V. M. Pan
Affiliation:
Department of Superconductivity, Institute for Metal Physics, 252142 Kiev, Ukraine
Get access

Abstract

Using a seeded melt growth (SMG) method, we have produced single-domain YBa2Cu3Ox with high levitation forces and trapped magnetic fields. A threshold temperature TL has been found above which extraneous nucleation does not occur. Surface nucleation has been suppressed when the top sample surface is coated with low melting compounds. The planar growth rates along the a- and c-axes have been found to be comparable within the undercooling range used in this study, and agree well with the current model. Major factors that strongly influence the levitation force have been studied in detail including domain geometry and orientation. Current physical models have been used to interpret the observed levitation force behaviors.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Salama, K. and Lee, D. F., Supercond. Sci. Technol. 7, 177 (1994).Google Scholar
2.McGinn, P. G., Chen, W., Zhu, N., Lanagan, M., and Balachandran, U., Appl. Phys. Lett. 57, 1455 (1990).Google Scholar
3.Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, C. W., Nature 345, 326 (1990).Google Scholar
4.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).Google Scholar
5.Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
6.Murakami, M., Morita, M., Doi, K., Miyamoto, K., and Hamada, H., Jpn. J. Appl. Phys. 28, L399 (1989).Google Scholar
7.Murakami, M., Morita, M., and Koyama, N., Jpn. J. Appl. Phys. 28, L1125 (1989).CrossRefGoogle Scholar
8.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).Google Scholar
9.Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).Google Scholar
10.Shi, D., Xu, M., Chen, J. G., Fang, M. M., Krishnan, H., Welp, U., McGinn, P. J., Chen, W. H., Langan, M. T., Goretta, K. C., Dusek, J. T., Picciolo, J. J., Hong, J. M., Miller, D., and Balachandran, U., J. Appl. Phys. 68, 228 (1990).Google Scholar
11.Cima, M., Flemings, M., Figueredo, A., Nakade, M., Ishii, H., Brody, H., and Haggerty, J., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
12.Varanasi, C. and McGinn, P. J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
13.McGinn, P., Zhu, N., Chen, W., Sengupta, S., and Li, T., Physica C 176, 203 (1991).Google Scholar
14.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
15.Chan, Siu-Wai, Hwang, D. M., Ramesh, R., Sampere, S. M., and Nazar, L., Proc. High Tc Superconducting Thin Films: Processing, Characterization and Applications, edited by Stockbaur, R. (AIP, New York, 1990), p. 172.Google Scholar
16.Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).CrossRefGoogle Scholar
17.Babcock, S. E. and Larbalestier, D. C., J. Mater. Res. 5, 919 (1990).Google Scholar
18.Chen, J. G., Shi, D., Wayman, C. M., McGinn, P. J., Chen, W. H., and Zhu, N., Mater. Lett. 14, 177 (1992).CrossRefGoogle Scholar
19.Hull, J. R., Mulcahy, T. M., Uherka, K. L., Erck, R. E., and Abboud, R. G., Appl. Supercond. 2, 449455 (1994).CrossRefGoogle Scholar
20.Sawano, K., Morita, M., Tanaka, M., Sasaki, T., Kimura, K., Takebayashi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30, L1157 (1991).Google Scholar
21.Murakami, M.et al., Jpn. J. Appl. Phys. 29, L1991 (1990).Google Scholar
22.Blohowiak, K. Y.et al., IEEE Trans. Appl. Supercond. 3, 1049 (1993).CrossRefGoogle Scholar
23.Todt, V. R., Sengupta, S., Shi, D., Hull, J., Sahm, P. R., McGinn, P. J., and Poeppel, R., J. Electron. Mater. 23, 1127 (1994).CrossRefGoogle Scholar
24.Shi, D., Zhong, W., Welp, U., Sengupta, S., Todt, V., Crabtree, G. W., Dorris, S., and Balachandran, U., IEEE Trans. Magn. 5, 1627 (1994).Google Scholar
25.Shi, D.et al., Physica C 246, 253 (1995).CrossRefGoogle Scholar
26.Izumi, T., Ohtsu, K., Nakamura, Y., and Shiohara, Y., Adv. Supercond. V, 581 (1993).Google Scholar
27.Endo, A., Chauhan, H. S., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 11, 1114 (1996).Google Scholar
28.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
29.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).Google Scholar
30.Lo, W., Leung, H. T., Cardwell, D. A., and Chow, J. C. L. (unpublished).Google Scholar
31.Nakamura, Y., Endo, A., and Shiohara, Y., J. Mater. Res. 11, 1094 (1996).Google Scholar
32.Endo, A., Chauhan, H. S., Egi, T., and Shiohara, Y., J. Mater. Res. 11, 795 (1996).Google Scholar
33.Murakami, M., Oyama, T., Fujimoto, H., Taguchi, T., Gotoh, A., Shiohara, Y., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 29, L1991 (1990).Google Scholar
34.Chen, In-Gann, Liu, J., Weinstein, R., and Lau, K., J. Appl. Phys. 72, 1013 (1992).CrossRefGoogle Scholar
35.Sengupta, S. and Gains, J. R. Jr, Supercond. Ind. 7, 15 (1994).Google Scholar
36.Yang, Z. J., Jpn. J. Appl. Phys. 31, L938–L941 (1992).CrossRefGoogle Scholar
37.Yang, Z. J., Appl. Supercond. 2, 559569 (1994).Google Scholar