Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T10:33:49.292Z Has data issue: false hasContentIssue false

Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis

Published online by Cambridge University Press:  20 December 2016

Mou Pal*
Affiliation:
Instituto de Física, Benemerita Universidad Autonoma de Puebla, Puebla, C.P. 72570, México
Nini R. Mathews
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco 62580, Morelos, México
Xavier Mathew*
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco 62580, Morelos, México
*
a)Address all correspondence to these authors. e-mail: mou@ifuap.buap.mx
b)e-mail: xm@ier.unam.mx
Get access

Abstract

In the present work, we report the development of phase pure and highly crystalline stibnite Sb2S3 nanostructures by a surfactant-mediated hydrothermal method. Polyvinylpyrrolidone (PVP) as the surfactant has a striking effect on the assembly of nanorods into dumbbell shaped nanorod-bundles. While nanorods with high aspect ratio were formed in absence of the surfactant, dumbbell shaped nanorod bundles were obtained using the surfactant. The structural, morphological, and optical properties were examined by X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer. Both XRD and Raman spectroscopy confirmed the formation of orthorhombic phase pure stibnite (Sb2S3). The ratio of Sb to S is found to be close to 2:3, corresponding to Sb2S3. The optical band gap varied in the range of 1.65–1.68 eV depending on the concentration of the surfactant.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

References

REFERENCES

Gao, M.R., Xu, Y.F., Jiang, J., and Yu, S.H.: Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986 (2013).CrossRefGoogle Scholar
Benedik, G., ed.: Surface Properties of Layered Structure, Vol. 16 (Springer, Dordrecht, 1992); pp. 97150.Google Scholar
Zhu, Q., Gong, M., Zhang, C., Yong, G., and Xiang, S.: Preparation of Sb2S3 nanomaterials with different morphologies via a refluxing approach. J. Cryst. Growth 311, 3651 (2009).Google Scholar
Shuai, X. and Shen, W.: A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities. Nanoscale Res. Lett. 7, 199 (2012).CrossRefGoogle ScholarPubMed
Li, K.Q., Huang, F.Q., and Lin, X.P.: Pristine narrow-band gap Sb2S3 as a high-efficiency visible-light responsive photocatalyst. Scr. Mater. 58, 834 (2008).Google Scholar
Ibuki, S. and Yoshimatsu, S.: Photoconductivity of stibnite (Sb2S3). J. Phys. Soc. Jpn. 10, 549 (1955).Google Scholar
Zhang, H., Ge, M., Yang, L., Zhou, Z., Chen, W., Li, Q., and Liu, L.: Synthesis and catalytic properties of Sb2S3 nanowire bundles as counter electrodes for dye-sensitized solar cells. J. Phys. Chem. C 117, 10285 (2013).Google Scholar
Senthil, T.S., Muthukumarasamy, N., and Kang, M.: Ball/dumbbell-like structured micrometer-sized Sb2S3 particles as a scattering layer in dye-sensitized solar cells. Opt. Lett. 39, 1865 (2014).Google Scholar
Sun, M., Li, D., Li, W., Chen, Y., Chen, Z., He, Y., and Fu, X.: New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C 112, 18706 (2008).CrossRefGoogle Scholar
Rajpure, K.Y., Lokhande, C.D., and Bhosele, C.H.: Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium. Thin Solid Films 311, 114 (1997).Google Scholar
Cao, X., Gu, L., Zhuge, L., Gao, W., Wang, W., and Wu, S.: Template-free preparation of hollow Sb2S3 microspheres as supports for Ag nanoparticles and photocatalytic properties of the constructed metal–semiconductor nanostructures. Adv. Funct. Mater. 16, 896 (2006).CrossRefGoogle Scholar
Lazcano, Y., Nair, M., and Nair, P.: Photovoltaic p-i-n structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. J. Electrochem. Soc. 152, 635 (2005).CrossRefGoogle Scholar
Liang, X., Wang, X., Zhuang, J., Chen, Y.T., Wang, D.S., and Li, Y.D.: Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16, 1805 (2006).Google Scholar
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).Google Scholar
Yang, H., Lei, M., Fu, L., Tang, A., and Mann, S.: Controlled assembly of Sb2S3 nanoparticles on silica/polymer nanotubes: Insights into the nature of hybrid interfaces. Sci. Rep. 3, 1336 (2013).CrossRefGoogle ScholarPubMed
Alemi, A., Hanifehpour, Y., and Joo, S.W.: Synthesis and characterization of Sb2S3 nanorods via complex decomposition approach. J. Nanomater. 2011, Article ID 414798 (2011).Google Scholar
Han, Q., Sun, S., Sun, D., Zhu, J., and Wang, X.: Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. RSC Adv. 1, 1364 (2011).Google Scholar
Zhang, H., Hu, C., Ding, Y., and Lin, Y.: Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. J. Alloys Compd. 625, 90 (2015).Google Scholar
Wagner, J. and Köhler, J.M.: Continuous synthesis of gold nanoparticles in microreactor. Nano Lett. 5, 685 (2005).Google Scholar
Liu, Y., Ting, K., Chua, E., Sum, T.C., and Gan, C.K.: First principles study of the lattice dynamics of Sb2S3 . Phys. Chem. Chem. Phys. 16, 345 (2014).CrossRefGoogle ScholarPubMed
Pilapong, C., Thongtem, T., and Thongtem, S.: Hydrothermal synthesis of double sheaf-like Sb2S3 using copolymer as a crystal splitting agent. J. Alloys Compd. 507, 38 (2010).Google Scholar
Makreski, P., Petrusevski, G., Ugarkovic, S., Jovanovski, G., and Jovanovski, G.: Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vib. Spectrosc. 68, 177 (2013).CrossRefGoogle Scholar
Wu, W., He, Q., and Jiang, C.: Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008).Google Scholar
Seo, W.S., Lee, J.H., Sun, X., Suzuki, Y., Mann, D., Liu, Z., Terashima, M., Yang, P.C., McConnell, M.V., Nishimura, D.G., and Dai, H.: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971 (2006).CrossRefGoogle ScholarPubMed
Xiao, K., Xu, Q-Z., Ye, K-H., Liu, Z-Q., Fu, L-M., Li, N., Chen, Y.B., and Su, Y-Z.: Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Lett. 2, 51 (2013).CrossRefGoogle Scholar
Ota, J. and Srivastava, S.K.: Tartaric acid assisted growth of Sb2S3 nanorods by a simple wet chemical method. Cryst. Growth Des. 7, 343 (2007).CrossRefGoogle Scholar
Zakaznova-Herzog, V.P., Harmer, S.L., Nesbitt, H.W., Bancroft, G.M., Flemming, R., and Pratt, A.R.: High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surf. Sci. 600, 348 (2006).Google Scholar