Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:28:48.025Z Has data issue: false hasContentIssue false

Synthesis and characterization of nitrogen-doped titanium dioxide nanomaterials derived from nanotube sodium titanate precursor

Published online by Cambridge University Press:  21 August 2012

Baoli Tian
Affiliation:
Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004, Henan, People’s Republic of China
Yu Qian
Affiliation:
Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004, Henan, People’s Republic of China
Binbin Hu
Affiliation:
Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004, Henan, People’s Republic of China
Jiaruo Sun
Affiliation:
Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004, Henan, People’s Republic of China
Zuliang Du*
Affiliation:
Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004, Henan, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zld@henu.edu.cn
Get access

Abstract

Nitrogen-doped titanium dioxide (denoted as N-doped TiO2) nanomaterials were prepared through the ion exchange of sodium titanate nanotube (the precursor; denoted as STN) with aqueous NH4Cl and follow-up sintering at different temperatures in air. The morphology, structure, surface component, and optical properties of as-obtained N-doped TiO2 nanomaterials have been analyzed by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and ultraviolet–visible light diffuse reflectance spectrometry. The formation mechanism and the origin of the visible light absorption for N-doped TiO2 nanomaterials have been discussed. Moreover, the thermogravimetric analysis and differential thermal analysis of N-doped TiO2 nanomaterial calcined at 100 °C are conducted as an example to examine the thermal stability of as-synthesized N-doped TiO2. It has been found that, as the calcination temperature rises, the initial nanotubular morphology of STN is transformed to the final nanoscale granular one, accompanied by a phase transformation from orthorhombic crystalline system to anatase TiO2. The N content in N-doped TiO2 is 7.04%, 6.22%, 3.20%, 1.14%, 0.61%, and 0.40% (atomic percentage), depending on calcination temperature rising from 100 to 600 °C. Moreover, N-doped TiO2 samples experience three stages of weight losses, and that calcinated at 300 °C and above have strong visible light absorption, due to the formation of Ti–O–N bonds thereat.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sun, H.Q., Bai, Y., Liu, H.J., Jin, W.Q., and Xu, N.P.: Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. J. Photochem. Photobiol., A 201, 15 (2009).CrossRefGoogle Scholar
2.Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
3.Young, C., Lim, T.M., Chiang, K., Scott, J., and Amal, R.: Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Appl. Catal., B 78, 1 (2008).CrossRefGoogle Scholar
4.Kim, D.H., Lee, K.S., Kim, Y.S., Chung, Y.C., and Kim, S.J.: Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light. J. Am. Ceram. Soc. 89, 515 (2006).Google Scholar
5.Dunnill, C.W., Ansari, Z., Kafizas, A., Perni, S., Morgan, D.J., Wilson, M., and Parkin, I.P.: Visible light photocatalysts—N-doped TiO2 by sol–gel, enhanced with surface bound silver nanoparticle islands. J. Mater. Chem. 21, 11854 (2011).CrossRefGoogle Scholar
6.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
7.Chen, S.F., Chen, L., Gao, S., and Cao, G.Y.: The preparation of nitrogen-doped photocatalyst TiO2−xNx by ball milling. Chem. Phys. Lett. 413, 404 (2005).Google Scholar
8.Janus, M., Inagaki, M., Tryba, B., Toyoda, M., and Morawski, A.W.: Carbon-modified TiO2 photocatalyst by ethanol carbonization. Appl. Catal., B 63, 272 (2006).CrossRefGoogle Scholar
9.Yin, S., Ihara, K., Aita, Y., Komatsu, M., and Sato, T.: Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route. J. Photochem. Photobiol., A 179, 105 (2006).CrossRefGoogle Scholar
10.Chong, S.V., Suresh, N., Xia, J., Al-Salim, N., and Idriss, H.: TiO2 nanobelts/CdSSe quantum dots nanocomposite. J. Phys. Chem. C 111, 10389 (2007).CrossRefGoogle Scholar
11.Li, Q.Y., Kako, T., and Ye, J.H.: PbS/CdS nanocrystal-sensitized titanate network films: Enhanced photocatalytic activities and super-amphiphilicity. J. Mater. Chem. 20, 10187 (2010).CrossRefGoogle Scholar
12.Yang, G.D., Jiang, Z., Shi, H.H., Xiao, T.C., and Yan, Z.F.: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301 (2010).CrossRefGoogle Scholar
13.Gohin, M., Maurin, I., Gacoin, T., and Boilot, J.P.: Photocatalytic activity of mesoporous films based on N-doped TiO2 nanoparticles. J. Mater. Chem. 20, 8070 (2010).CrossRefGoogle Scholar
14.Randorn, C. and Irvine, J.T.S.: Synthesis and visible light photoactivity of a high temperature stable yellow TiO2 photocatalyst. J. Mater. Chem. 20, 8700 (2010).CrossRefGoogle Scholar
15.Irie, H., Watanabe, Y., and Hashimoto, K.: Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
16.Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., and Sugihara, S.: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal., B 42, 403 (2003).CrossRefGoogle Scholar
17.Qiu, X.F. and Burda, C.: Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chem. Phys. 339, 1 (2007).CrossRefGoogle Scholar
18.Zhu, W.G., Qiu, X.F., Iancu, V., Chen, X.Q., Pan, H., Wang, W., Dimitrijevic, N.M., Rajh, T., Meyer, H.M. III, Paranthaman, M.P., Stocks, G.M., Weitering, H.H., Gu, B.H., Eres, G., and Zhang, Z.Y.: Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys. Rev. Lett. 103, 226401 (2009).CrossRefGoogle ScholarPubMed
19.Feng, C.X., Wang, Y., Jin, Z.S., Zhang, J.W., Zhang, S.L., Wu, Z.S., and Zhang, Z.J.: Photoactive centers responsible for visible-light photoactivity of N-doped TiO2. New J. Chem. 32, 1038 (2008).CrossRefGoogle Scholar
20.Jiang, Z., Yang, F., Luo, N.J., Chu, B.T.T., Sun, D.Y., Shi, H.H., Xiao, T.C., and Edwards, P.P.: Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis. Chem. Commum. 44, 6372 (2008).CrossRefGoogle Scholar
21.Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z.L., Manivannan, A., Zhi, M.J., Li, M., and Wu, N.Q.: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290 (2009).CrossRefGoogle ScholarPubMed
22.Wang, Y., Feng, C.X., Zhang, M., Yang, J.J., and Zhang, Z.J.: Visible light active N-doped TiO2 prepared from different precursors: Origin of the visible light absorption and photoactivity. Appl. Catal., B 104, 268 (2011).CrossRefGoogle Scholar
23.Ou, H.H., Lo, S.L., and Liao, C.H.: N-doped TiO2 prepared from microwave-assisted titanate nanotubes (NaxH2−xTi3O7): The effect of microwave irradiation during TNT synthesis on the visible light photoactivity of N-doped TiO2. J. Phys. Chem. C 115, 4000 (2011).CrossRefGoogle Scholar
24.Chang, J.C., Tsai, W.J., Chiu, T.C., Liu, C.W., Chao, J.H., and Lin, C.H.: Chemistry in a confined space: Characterization of nitrogen-doped titanium oxide nanotubes produced by calcining ammonium trititanate nanotubes. J. Mater. Chem. 21, 4605 (2011).CrossRefGoogle Scholar
25.Livraghi, S., Paganini, M.C., Giamello, E., Selloni, A., Valentin, C.D., and Pacchioni, G.: Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 128, 15666 (2006).CrossRefGoogle ScholarPubMed
26.Sun, X.M. and Li, Y.D.: Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J. 9, 2229 (2003).CrossRefGoogle ScholarPubMed
27.Yang, J.J., Jin, Z.S., Wang, X.D., Li, W., Zhang, J.W., Zhang, S.L., Guo, X.Y., and Zhang, Z.J.: Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 20, 3898 (2003).CrossRefGoogle Scholar
28.Bao, N., Sun, J., Zhang, F., Ma, Z.H., and Liu, F.: N—doped TiO2: Preparation by hydrothermal reaction-thermolysis process and photocatalytic activity. Chin. J. Inorg. Chem. 23, 101 (2007).Google Scholar
29.Wong, M.S., Chou, H.P., and Yang, T.S.: Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films 494, 244 (2006).CrossRefGoogle Scholar
30.Vitiello, R.P., Macak, J.M., Ghicov, A., Tsuchiya, H., Dick, L.F.P., and Schmuki, P.: N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 8, 544 (2006).CrossRefGoogle Scholar
31.Sato, S., Nakamura, R., and Abe, S.: Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal., A 284, 131 (2005).CrossRefGoogle Scholar
32.Gole, J.L., Stout, J.D., Burda, C., Lou, Y.B., and Chen, X.B.: Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004).CrossRefGoogle Scholar
33.Prokes, S.M., Gole, J.L., Chen, X.B., Burda, C., and Carlos, W.E.: Defect-related optical behavior in surface-modified TiO2 nanostructures. Adv. Funct. Mater. 15, 161 (2005).CrossRefGoogle Scholar
34.Xiang, Q.J., Yu, J.G., Wang, W.G., and Jaroniec, M.: Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 47, 6906 (2011).CrossRefGoogle ScholarPubMed
35.Xiang, Q.J., Yu, J.G., and Jaroniec, M.: Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853 (2011).CrossRefGoogle ScholarPubMed
36.Kim, G.S., Ansari, S.G., Seo, H.K., Kim, Y.S., and Shin, H.S.: Effect of annealing temperature on structural and bonded states of titanate nanotube films. J. Appl. Phys. 101, 024314–1 (2007).Google Scholar
37.Chen, X.B., Lou, Y.B., Samia, A.C.S., Burda, C., and Gole, J.L.: Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Adv. Funct. Mater. 15, 41 (2005).CrossRefGoogle Scholar
38.Jung, S.M. and Grange, P.: The investigation of mechanism of SCR reaction on a TiO2-SO42− catalyst by DRIFTS. Appl. Catal., B 27, L11 (2000).CrossRefGoogle Scholar
39.Wang, B.Y., Wu, J.M., and Li, G.F.: Comparison of the behaviors of phase transformation between titanate nanotubes and titanate nano-sheets. Chem. Res. Applic. 18, 316 (2006).Google Scholar
40.Valentin, C.D., Pacchioni, G., Selloni, A., Livraghi, S., and Giamello, E.: Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 109, 11414 (2005).CrossRefGoogle ScholarPubMed
41.Liu, S.W., Yu, J.G., and Wang, W.G.: Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 12, 12308 (2010).CrossRefGoogle ScholarPubMed
42.Zhao, Y.X., Qiu, X.F., and Burda, C.: The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chem. Mater. 20, 2629 (2008).CrossRefGoogle Scholar
43.Li, Q.Y., Zhang, J.W., Jin, Z.S., Yang, D.G., Wang, X.D., Yang, J.J., and Zhang, Z.J.: Photo and photoelectrochemical properties of p-type low-temperature dehydrated nanotube titanic acid Electrochem. Commun. 8, 741 (2006).CrossRefGoogle Scholar
44.Li, Q.Y., Wang, X.D., Jin, Z.S., Yang, D.G., Zhang, S.L., Guo, X.Y., Yang, J.J., and Zhang, Z.J.: n/p-type changeable semiconductor TiO2 prepared from NTA. J. Nanopart. Res. 9, 951 (2007).CrossRefGoogle Scholar
45.Zhang, M., Jin, Z.S., Zhang, J.W., Guo, X.Y., Yang, J.J., Li, W., Wang, X.D., and Zhang, Z.J.: Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Mol. Catal. A: Chem. 217, 203 (2004).CrossRefGoogle Scholar