Published online by Cambridge University Press: 10 August 2015
Multifunctionalized nanoparticles have a great attention owing to their unique advantages as ideal tools for gene/drug delivery, bioimaging, labeling, or intracellular tracking in biomedical applications. In the present work, azole functional Poly(glycidyl methacrylate) (PGMA) grafted hollow silica sphere (HSS) nanoparticles synthesized and characterized as biomaterials. For the preparation of HSS particles, a two-step method based on the sol–gel process was used in this study. HSS grafted with PGMA by free radical polymerization of (glycidyl methacrylate) (GMA) and HSPGMA (PGMA grafted HSS) modified with 5-aminotetrazole (ATet), 3-amino-1,2,4-triazole (ATri), and 1H-1,2,4-triazole (Tri) to obtain 1,2,4-triazole functional PGMA grafted HSS (HSPGMA-Tri), 5-aminotetrazole functional PGMA grafted HSS (HSPGMA-Tet) and 5-Amino-Triazole functional PGMA grafted HSS (HSPGMA-ATri) molecules via ring opening of the epoxide ring. Azole functional PGMA grafted HSS composites were doped with phosphoric acid. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) analyses were confirmed the grafting and modification of HSS. TGA and DSC were used to examine the thermal stability and homogeneity of the materials.