Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-30T22:04:27.007Z Has data issue: false hasContentIssue false

Synthesis and characterization of polysilane precursors for silicon carbide fibers

Published online by Cambridge University Press:  03 March 2011

Wayne R.I. Cranstone
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
Suzannc M. Bushnell-Watson
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
John H. Sharp*
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

A series of polysilanes was prepared by the alkali metal dechlorination of chlorosilane monomers, in which the overall functionality, F, of the reaction was varied. Starting monomers of functionality f = 2.0 and 3.0 were reacted together in various proportions to achieve values of F of 2.2, 2.35, and 2.5. In addition to varying the functionality of the reaction, three different difunctional monomers, dimethyldichlorosilane (DMDCS), diphenyldichlorosilane (DPDCS), and methylphenyldichlorosilane (MPDCS), and two trifunctional monomers, phenyltrichlorosilane (PTCS) and ethyltrichlorosilane (ETCS), were used. The effect of these changes on the yields of the polysilanes was determined, and the products were investigated by the use of thermogravimetry (TG), gel permeation chromatography (GPC), and thermomechanical analysis (TMA). The ability to spin a polysilane fiber was also assessed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Miller, R. D. and Michl, J., Chem. Rev. 89, 13591410 (1989).CrossRefGoogle Scholar
2Emsley, R. J. P., Sharp, J. H., and Bailey, J.E., Br. Ceram. Proc. 45, 139151 (1990).Google Scholar
3Seyferth, D., Strohmann, C., Tracy, H. J., and Robison, J.L., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W.E., Shaw, T. M., Gottschall, R. J., and Chen, Y. (Mater. Res. Soc. Symp. Proc. 249, Pittsburgh, PA, 1992), pp. 315.Google Scholar
4Laine, R. M. and Babonneau, F., Chem. Mater. 5, 260279 (1993).CrossRefGoogle Scholar
5Yajima, S., Philos. Trans. R. Soc. London A 294, 419426 (1980).Google Scholar
6West, R., David, L. D., Djorovich, P. I., Hyuk, Y., and Sinclair, R., Ceram. Bull 62, 899903 (1983).Google Scholar
7Schilling, C. L., Wesson, IP., and Williams, T.C., Ceram. Bull. 62, 912915 (1983).Google Scholar
8Carlsson, D. J., Cooney, J. D., Gauthier, S., and Worsfold, D.J., J. Am. Ceram. Soc. 73, 237241 (1990).CrossRefGoogle Scholar
9Bushnell-Watson, S.M., Morris, M. J., and Sharp, J.H., Polymer (1995, in press).Google Scholar
10Bushnell-Watson, S.M. and Sharp, J.H., J. Thermal Analysis 40, 189199 (1993).CrossRefGoogle Scholar
11Bushnell-Watson, S.M. and Sharp, J. H., Thermochimica Acta 240, 1122 (1994).CrossRefGoogle Scholar
12Sartoratto, P. P. C. and Yoshida, I.V.P., J. Polym. Sci. Pt. A: Polym. Chem. 30, 23332340 (1992).CrossRefGoogle Scholar
13Kim, H. K. and Matyjaszewski, K., Abs. Am. Chem. Soc. 197, 62 (1989).Google Scholar
14Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci. 14, 297334 (1984).CrossRefGoogle Scholar
15Bushnell-Watson, S.M., Emsley, R. J. P., Morris, M. J., and Sharp, J.H., J. Phys. (Paris) IV, supplément au J. Phys. (Paris) III 3, 12991304 (1993).Google Scholar
16Gauthier, S. and Worsfold, D. J., Macromolecules 22, 22132218 (1989).CrossRefGoogle Scholar
17Jones, R. G., Benfield, R. E., Cragg, R. H., and Swain, A.C., J. Chem. Soc, Chem. Commun., 112114 (1992).CrossRefGoogle Scholar
18Zeigler, J. M., McLaughlin, L.I., and Perry, R.J., J. Inorg. Organometallic Polymers 1, 531543 (1991).CrossRefGoogle Scholar
19Yajima, S., Hasegawa, Y., Hayashi, J., and Iimura, M., J. Mater. Sci. 13, 25692576 (1978).Google Scholar
20Hasegawa, Y., Iimura, M., and Yajima, S., J. Mater. Sci. 15, 720728 (1980).CrossRefGoogle Scholar
21Toreki, W., Choi, G. J., Batich, C. D., Sacks, M. D., and Saleem, M., Ceram. Eng. Sci. Proc. 13, 198208 (1992).CrossRefGoogle Scholar
22Maghsoodi, S. I., Pang, Y., and Barton, T. J., J. Polym. Sci., Part A: Polymer Chemistry 28, 955965 (1990).CrossRefGoogle Scholar
23Seyferth, D., Wood, T. G., Tracy, H. J., and Robison, J.L., J. Am. Ceram. Soc. 75, 13001302 (1992).CrossRefGoogle Scholar
24Zhang, Z. F., Babonneau, F., Laine, R. M., Mu, Y., Harrod, J. F., and Rahn, J.A., J. Am. Ceram. Soc. 74, 670673 (1991).CrossRefGoogle Scholar
25Lipowitz, J., J. Inorg. Organometallic Polymers 1, 277297 (1991).CrossRefGoogle Scholar