Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:22:53.625Z Has data issue: false hasContentIssue false

Synthesis and characterization of TiO2 thin films on organic self-assembled monolayers: Part I. Film formation from aqueous solutions

Published online by Cambridge University Press:  03 March 2011

H. Shin
Affiliation:
Department of Materials Science and Engineering. Case Western Reserve University, Cleveland, Ohio 44106
R.J. Collins
Affiliation:
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
A.H. Heuer
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
C.N. Sukenik
Affiliation:
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

Self-assembled monolayers (SAMs) bearing sulfonate (-SO3H) surface functional groups, on single-crystal Si wafers, were used as substrates for the deposition of TiO2 thin films from aqueous solutions. Polycrystalline TiO2 thin films over 50 nm thick formed in 2 h by hydrolysis of TiCl4 in aqueous HCI solutions at 80 °C. The films were pore-free, showed excellent adherence and uniformity, and consisted of anatase crystallites 2–4 nm in diameter. Annealing at temperatures up to 600 °C caused coarsening of the anatase grains, but no loss of adherence or structural integrity.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1The Oxide Handbook, edited by Samsonov, G. V. (Plenum, New York, 1973).CrossRefGoogle Scholar
2Feuersanger, A. E., Proc. IEEE 52, 1463 (1964).CrossRefGoogle Scholar
3Fukushima, K., Yamada, I., and Takagi, T., J. Appl. Phys. 58, 4146 (1985).CrossRefGoogle Scholar
4Fukushima, K. and Yamada, I., J. Appl. Phys. 65 (2), 619 (1988).Google Scholar
5Fitzgibbons, E. T., Sladek, K. J., and Hartwig, W. H., J. Electrochem. Soc. 119, 735 (1972).CrossRefGoogle Scholar
6Yoldas, B. E. and O'Keefe, T.W., Appl. Opt. 18, 3133 (1979).CrossRefGoogle Scholar
7Fuyuki, T. and Matsunami, H., Jpn. J. Appl. Phys. 9, 1288 (1986).Google Scholar
8Lottiaux, M., Boulesteix, C., Nihoul, G., Varnier, F., Flory, F., Galindo, R., and Pelletier, E., Thin Solid Films 170 107 (1989).Google Scholar
9Ketron, L., Bull. Am. Ceram. Soc. 68, 860 (1989).Google Scholar
10Nabavi, M., Doeuff, S., Sanchez, C., and Livage, J., Mater. Sci. Eng. B3, 203 (1989).Google Scholar
11Burns, G. P., J. Appl. Phys. 65 (5), 2095 (1989).CrossRefGoogle Scholar
12Fuyuki, T., Kobayashi, T., and Matsunami, H., J. Electrochem. Soc. 135, 248 (1988).Google Scholar
13Siefering, K. L. and Griffin, G. L., J. Electrochem. Soc. 137, 814 (1990).CrossRefGoogle Scholar
14Yeung, K. S. and Lam, Y. W., Thin Solid Films 109, 169 (1983).Google Scholar
15Williams, L. M. and Hess, D. W., J. Vac. Sci. Technol. A 1, 18101819 (1983).CrossRefGoogle Scholar
16Hayashi, S. and Hirai, T., J. Cryst. Growth 36, 157 (1976).CrossRefGoogle Scholar
17Gao, Y., Merkle, K. L., Chang, H. L. M., Zhang, T. J., and Lam, D. J., J. Mater. Res. 6, 2417 (1991).CrossRefGoogle Scholar
18Chang, H. L. M., Parker, J. C., You, H., Xu, J. J., and Lam, D. J., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B.M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 343.Google Scholar
19Selvaraj, U., Prasadarao, A. V., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 75, 1167 (1992).CrossRefGoogle Scholar
20Fuyuki, T. and Matsunami, H., Jpn. Appl. Phys. 25, 1288 (1986).Google Scholar
21Bertrand, P. A. and Fleischauer, P. D., Thin Solid Films 103, 167 (1983).CrossRefGoogle Scholar
22Desu, S. B., Mater. Sci. Eng. B13, 299 (1992).CrossRefGoogle Scholar
23Heuer, A. H., Fink, D. J., Laraia, V. J., Arias, J. L., Calvert, P. D., Kendall, K., Messing, G. L., Blackwell, J., Rieke, P. C., Thompson, D. H., Wheeler, A. P., Veis, A., and Caplan, A. I., Science 225, 1098 (1992).CrossRefGoogle Scholar
24Mann, S., Archibald, D. D., Didymus, J. M., Heywood, B. R., Meldrum, F. C., and Wade, V. J., MRS Bull. XVII (10), 32 (1992).Google Scholar
25Calvert, P. and Mann, S., J. Mater. Sci. 23, 3801 (1988).CrossRefGoogle Scholar
26Tarasevich, B. J. and Rieke, P. C., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P. C., Calvert, P. D., and Alper, M. (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990), p. 51.Google Scholar
27Mann, S., Archibald, D. D., Didymus, J. M., Douglas, T., Heywood, B. R., Meldrum, F. C., and Reeves, N. J., Science 261, 1286 (1993).CrossRefGoogle Scholar
28Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L, Liu, J., Virden, J. W., and McVay, G.L., Science 264, 48 (1994).CrossRefGoogle Scholar
29Shin, H., Collins, R. J., De Guire, M. R., Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10, 699703 (1995).Google Scholar
30(a) Angst, D.L. and Simmons, G.W., Langmuir 7, 2236 (1991);(b) Tripp, C.P. and Hair, M.L., Langmuir 8, 1120 (1992).CrossRefGoogle Scholar
31Le, J. D. Grange, Markham, J. L., and Kurkjian, C. R., Langmuir 9, 1749 (1993).Google Scholar
32(a) Balachander, N. and Sukenik, C. N., Tetrahedron Lett. 29, 5593 (1988); (b) Balachander, N. and Sukenik, C.N., Langmuir 6, 1621 (1990); (c) Lee, Y.W., Reed-Mundell, J., Zull, J. E., and Sukenik, C. N., Langmuir 9, 3009 (1993).Google Scholar
33Collins, R. J. and Sukenik, C. N., unpublished.Google Scholar
34Handbook for X-ray Photoelectron Spectroscopy, edited by Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E. (Perkin-Elmer, Eden Prairie, MN, 1978).Google Scholar
35Can be estimated as 8 nm {=(Dt)½, using D = 1 X 10-16 cm2 s-1 as the diffusion coefficient of oxygen in Si at 600 °C. [E. A. Irene, J. Electrochem. Soc. 129, 413 (1982).]}Google Scholar
36Nabivanets, B. I. and Kudritskaya, L. N., Russ. J. Inorg. Chem. 12, 789 (1967).Google Scholar
37Matijevic, E., Budnik, M., and Meites, L., J. Coll. Interf. Sci. 61, 302 (1977).Google Scholar