Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T15:58:19.814Z Has data issue: false hasContentIssue false

Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3

Published online by Cambridge University Press:  31 January 2011

Tariq Iqbal
Affiliation:
Fiber Optics Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
Mahmoud R. Shahriari
Affiliation:
Fiber Optics Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
Glenn Merberg
Affiliation:
Fiber Optics Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
George H. Sigel Jr.
Affiliation:
Fiber Optics Materials Research Program, Rutgers University, Piscataway, New Jersey 08854
Get access

Abstract

Fluorozirconate glasses are stable with respect to devitrification but have poor chemical durability and only fair mechanical strength. AlF3-based glasses with improved chemical durability and enhanced mechanical strength are reported here. The optical, mechanical, and thermal properties of these glasses are contrasted to the more familiar ZBLAN composition. The infrared edge of these glasses lies at shorter wavelengths than ZrF4-based glasses, but aluminum fluoride glasses offer some interesting opportunities for short-range IR fiber applications such as sensing, remote spectroscopy, and laser power propagation.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Poignant, H., Electron. Lett. 18, 808 (1981).Google Scholar
2Drexhage, M. G., Moynihan, C. T., and Saleh-Boulos, M., Laser Focus 16, 62 (1980).Google Scholar
3Shibata, S., Horiguchi, M., Jinguji, K., Mitachi, S., Kanamori, T., and Manabe, T., Electron. Lett. 17, 775 (1981).CrossRefGoogle Scholar
4Tran, D. C., Fisher, C. F., and Sigel, G. H., Jr., Electron. Lett. 18, 657 (1982).CrossRefGoogle Scholar
5Drehman, J. A., Mater. Sci. For. 19–20, 483 (1987).Google Scholar
6Tran, D. C., Sigel, G. H., Jr., and Bendow, B., J. Lightwave Technol. LT-2x, 566 (1984).CrossRefGoogle Scholar
7Sun, K. H., Glass Technol. 20, 36 (1979).Google Scholar
8Poulain, M., Chanthanasinh, M., and Lucas, J., Mater. Res. Bull. XII, 151 (1977).CrossRefGoogle Scholar
9Drexhage, M. G., Moynihan, C. T., and Saleh-Boulos, M., Mater. Res. Bull. XV, 213 (1980).CrossRefGoogle Scholar
10Shibata, T., Takahashi, H., Kimura, M., Ijichi, T., Takahashi, K., Sasaki, Y., and Yoshida, S., Mater. Sci. For. 5, 379 (1985).Google Scholar
11Tran, D. C., Burk, M. J., Levin, K. H., Fisher, C. F., Hart, P., Busse, L., Lu, G., and Sigel, G. H., Jr., Mater. Sci. For. 5, 339 (1985).Google Scholar
12Kanamori, T., Oikawa, K., Shibata, S., and Manabe, T., Jpn. J. Appl. Phys. 20, 326 (1981).CrossRefGoogle Scholar
13Izumitani, T., Yamashita, T., Tokida, M., Miura, K., and Tajima, H., Mater. Sci. For. 19–20, 19 (1987).Google Scholar
14Poulain, M. and Maze, G., Chemtronics 3, 77 (1988).Google Scholar
15Robinson, M., Fuller, K. C., and Pastor, R. C., J. Non-Cryst. Solids 110, 279 (1989).CrossRefGoogle Scholar
16Jijian, C., Rong, Z., and Rakov, E. G., J. Non-Cryst. Solids 112, 392 (1989).CrossRefGoogle Scholar
17Simmons, C. J. and Simmons, J. H., J. Am. Ceram. Soc. 9, 661 (1986).CrossRefGoogle Scholar
18Shahriari, M. R., Iqbal, T., and Sigel, G. H., Jr., to be published in Mater. Sci. For. (1990).Google Scholar