Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:02:34.429Z Has data issue: false hasContentIssue false

Synthesis of Al-based metastable alloys by mechanical milling Al and amorphous Fe78Si12B10powders

Published online by Cambridge University Press:  03 March 2011

K. Y. Wang
Affiliation:
State Key Laboratory for Advanced Metal Materials, University of Science and Technology Beijing, Beijing 100083, and State Key Laboratory for Rapid Solidifled-nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
A. Q. He
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
T. D. Shen
Affiliation:
State Key Laboratory for Rapid Solidified-nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
M. X. Quan
Affiliation:
State Key Laboratory for Rapid Solidified-nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
J. T. Wang
Affiliation:
State Key Laboratory for Rapid Solidified-nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, Shenyang 110015, China
Get access

Extract

Syntheses of Al-based metastable alloys from powder mixtures of elemental Al and amorphous Fe78Si12B10 [x at. % Al + (100 — x) at. % (Fe78Si12B10)] alloy by mechanical milling (MM) using a planetary ball mill are investigated. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are used to characterize their structure during the MM process. For the powder mixture with low content of Al (x = 75, 82), fully amorphous material can be obtained by MM, while for the milled product with a high content of Al (x = 90), nanocrystalline Al and amorphous phases are obtained. During the initial milling stage, the Al atoms are dissolved into the amorphous Fe78Si12B10 matrix by heavy deformation. Consequently, the Al-enriched homogeneous amorphous alloys are produced with the disappearance or shrinkage of diffraction peaks of Al in the XRD pattern. Further milling of the powder mixture with 75 at. % Al results in the crystallization of amorphous phase and the formation of nanocrystalline Al3Fe type phase. The crystallization products of all as-milled samples are very similar, composed of Al13Fe4 and AlFe3 phases. It is suggested that the kinetics of nucleation and growth favor the formation of amorphous phase due to the existence of amorphous phase initially. The amorphization reaction by mechanical milling is diffusion process, but defects and strain also play an important role.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
2Schwarz, R. B., Petrich, P. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
3Huang, B., Tokizcme, N., Ishihara, K. N., Shingu, P. H., and Nasu, S., J. Non-Cryst. Solids 117/118, 688 (1991).CrossRefGoogle Scholar
4Schultz, L., J. Less-Comm. Met. 145, 233 (1988).CrossRefGoogle Scholar
5Hellenstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
6Ermakov, A. Y., Yurchikov, Y. Y., and Barinov, V. A., Phys. Met. Metall. 52, 50 (1981).Google Scholar
7Lee, P. Y. and Koch, C. C., Appl. Phys. Lett. 50, 1578 (1987).CrossRefGoogle Scholar
8Wang, K. Y., He, A. Q., Shen, T. D., Quan, M. X., and Wang, J. T., J. Appl. Phys. 70, 7158 (1991).CrossRefGoogle Scholar
9Shingu, P. H., Huang, B., Kuyama, J., Ishihara, K. N., and Nasu, S., Proc. DGM Conf., October (1988), p. 319.Google Scholar
10Morris, M. A. and Morris, D. G., Mater. Sci. Forum 88–90, 529 (1992).CrossRefGoogle Scholar
11Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1963), p. 124.Google Scholar
12Trudeau, M. L., Dussault, D., Van Neste, A., and Schutz, R., Phys. Rev. Lett. 64, 99 (1990).CrossRefGoogle Scholar
13Trudeau, M. L., Huot, J. Y., Schutz, R., Dussault, D., Van Neste, A., and L'Esperance, G., Phys. Rev. B 45, 4626 (1992).CrossRefGoogle Scholar
14Spaepen, F., Acta Metall. 25, 4071 (1977).CrossRefGoogle Scholar
15Pak, H-R., Chu, J., Deangelis, R. J., and Okazali, K., Mater. Sci. Eng. A118, 14 (1989).Google Scholar
16Wang, K. Y.et al.: Synthesis of Al-based metastable alloys by mechanical milling Wang, K. Y., Ph.D. Thesis, Institute of Metal Research, Academia Sinica (1992).Google Scholar
17Quan, M. X., Wang, K. Y., Shen, T. D., and Wang, J. T., J. Alloys and Compounds 194, 325 (1993); Wang, K. Y., Quan, M. X., and Wang, J. T., J. Mater. Sci. (in press).CrossRefGoogle Scholar
18Bokstain, B. S., Klinger, L. M., Razumovski, I. M., and Uvarova, E. N., Fiz. Met. Metall. 51, 561 (1981).Google Scholar
19Hansen, M. and Anderko, K., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 90.Google Scholar
20Shingu, P. H., Huang, B., Nishitani, S. R., and Nasu, S., Proc. JIMS-5: Non-Equilibrium Solid Phases of Metal and Alloys, Supplement of Trans. JIM 29, 3 (1988).Google Scholar
21Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar