Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T01:17:26.967Z Has data issue: false hasContentIssue false

Synthesis of barium hexaferrite by pyrolysis of an aerosol

Published online by Cambridge University Press:  03 March 2011

M.V. Cabañas
Affiliation:
Departamento de Quimica Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
J.M. González-Calbet
Affiliation:
Departamento de Quimica Inorgánica, Facultad de Químicas, Universidad Complutense, 28040-Madrid, and Instituto de Magnetismo Aplicado, Las Rozas, 28230-Madrid, Spain
M. Vallet-Regí*
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, and Instituto de Magnetismo Aplicado, Las Rozas, 28230-Madrid, Spain
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Polycrystalline BaFe12O19 has been synthesized by pyrolysis of an aerosol produced by ultrahigh frequency spraying of a solution. Two precursor solutions have been used in order to study its influence on the formation temperature of the barium hexaferrite and on the microstructural and magnetic properties. The relationship between in situ temperature, pyrolysis precursor, and textural and magnetic properties of the products obtained is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mee, C. D. and Jeschke, J. C., J. Appl. Phys. 34, 1271 (1963).CrossRefGoogle Scholar
2Oda, K., Yoshio, T., O.-Oka, K., and Kanamaru, F., J. Mater. Sci. Lett. 4, 876 (1985).CrossRefGoogle Scholar
3Vallet, M., Rodríguez, P., Obradors, X., Isalgué, A., Rodríguez, J., and Pernet, M., J. de Physique 46, C6-335 (1985).Google Scholar
4Brahma, P., Chakravorty, D., Singh, K., and Bahadur, D., J. Mater. Sci. Lett. 9, 1438 (1990).CrossRefGoogle Scholar
5Ishizawa, H., Sakurai, O., Mizutani, N., and Kato, M., Am. Ceram. Soc. Bull. 65, 1399 (1986).Google Scholar
6Tomizawa, T., Matsunaga, H., Fujishiro, M., and Kakegawa, K., J. Solid State Chem. 89, 212 (1990).CrossRefGoogle Scholar
7Kaczmarek, W. A., Calka, A., and Ninham, B. W., Mat. Chem. Phys. 32, 43 (1992).CrossRefGoogle Scholar
8Tohghe, N., Tatsumisago, M., Minami, T., Okuyama, K., Adachi, M., and Kousaka, Y., Jpn. J. Appl. Phys. 27, L1086 (1988).CrossRefGoogle Scholar
9Cabañas, M. V., González-Calbet, J. M., Labeau, M., Mollard, P., Pernet, M., and Vallet-Regí, M., J. Solid State Chem. 101, 265 (1992).CrossRefGoogle Scholar
10Cabañas, M. V., Vallet-Regí, M., Labeau, M., and González-Calbet, J. M., J. Mater. Res. 8, 2694 (1993).CrossRefGoogle Scholar
11Morrish, A. H. and Kaneda, K., J. Magn. Magn. Mater. 35, 105 (1983).CrossRefGoogle Scholar