Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T15:56:39.230Z Has data issue: false hasContentIssue false

Synthesis of coaxial nanotubes: Titanium oxide sheathed with silicon oxide

Published online by Cambridge University Press:  31 January 2011

Ming Zhang
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Y. Bando*
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
K. Wada
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

The TiO2–SiO22 composite nanotubes with coaxial structure synthesized by sol-gel template method were presented. This process included 2 steps: first, grow SiO22 nanotubes in the pores of anodic alumina with a diameter of 200–250 nm; second, form TiO2 nanotubes within the SiO22 nanotubes. The TiO2 nanotubes with intact SiO22 sheaths were more uniform than those with sheaths partly removed. The existence of Ti–O–Si bonds and the amorphous sheaths is supposed to take an important role in the formation of composite nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., Nature 372, 159 (1994).Google Scholar
2.Ajayan, P.M., Stephan, O., Redlich, Ph., and Colliex, C., Nature 375, 564 (1995).CrossRefGoogle Scholar
3.Sen, R., Govindaraj, A., and Cao, C.N.R., Chem. Mater. 9, 2078 (1997).CrossRefGoogle Scholar
4.Ugarte, D., Chatelain, A., and de Heer, W.A., Science 274, 1897 (1996).CrossRefGoogle Scholar
5.Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar
6.Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., and Chang, R.P., Appl. Phys. Lett. 69 (3), 345 (1996).CrossRefGoogle Scholar
7.Suenaga, K., Colliex, C., Demoncy, N., Loisau, A., Pascard, H., and Willaime, F., Science 278, 653 (1997).CrossRefGoogle Scholar
8.Han, W., Kohler–Redlich, P., Ernst, F., and Muhle, M., Chem. Mater. 11, 3620 (1999).CrossRefGoogle Scholar
9.Zhang, Y., Suenaga, K., Colliex, C., and Iijima, S., Science 281, 973 (1998).CrossRefGoogle Scholar
10.Morales, Alfredo M. and Lieber, Charles M., Science 279, 208 (1998).CrossRefGoogle Scholar
11.Lee, S.T., Zhang, Y.F., Tang, N.H., Bello, I., Lee, C.S., and Chung, Y.W., J. Mater. Res. 14 (12), 4503 (1999).CrossRefGoogle Scholar
12.Meng, C.W., Zhang, L.D., Mo, C.M., Zhang, S.Y., Qin, Y., Feng, S.P., and Li, H.J., J. Mater. Res. 13 (9), 2533 (1998).CrossRefGoogle Scholar
13.Hulteen, J.C. and Martin, C.R., J. Mater. Chem. 7 (7), 1075 (1997).CrossRefGoogle Scholar
14.Lakshmi, B.B., Dorhout, P.K., and Martin, C.R., Chem. Mater. 9, 857 (1997).CrossRefGoogle Scholar
15.Lakshmi, B.B., Patrissi, C.J., and Martin, C.R., Chem. Mater. 9, 2544 (1997).CrossRefGoogle Scholar
16.Zhang, Ming, Bando, Y., Wada, K., and Kurashima, K., J. Mater. Sci. Lett. 18, 1911 (1999).CrossRefGoogle Scholar
17.Zhang, Ming, Bando, Y., and Wada, K., J. Mater. Res. 15, 387 (2000).CrossRefGoogle Scholar
18.Zhang, Ming, Bando, Y., and Wada, K., J. Mater. Sci. Lett. 20, 167 (2001).CrossRefGoogle Scholar
19.Kasuga, T., Hiramatsu, M., Hirano, M., and Hoson, A., J. Mater. Res. 12 (3), 607 (1997).CrossRefGoogle Scholar