Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T16:29:29.776Z Has data issue: false hasContentIssue false

Synthesis of cobalt oxide nanocrystal self-assembled materials

Published online by Cambridge University Press:  31 January 2011

J. S. Yin
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Z. L. Wang*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
*
a)Address all correspondence to this author. e-mail: zhong.wang@mse.gatech.edu
Get access

Abstract

Self-assembling of size, shape, and phase-selected nanocrystals into superlattices in a new approach for synthesizing a new generation of advanced materials with functionality. In this paper, high purity and monodispersive tetrahedral of CoO, with edge lengths of 4.4 ± 0.2 nm, have been synthesized and separated from Co nanocrystals using colloidal chemistry and magnetic separation. The tetrahedral CoO nanocrystals behave like a molecular matter, and their assembling forms superlattices with translational symmetry. The phase transformation of the CoO nanocrystals is examined by ex situ annealing in oxygen, and the results showed the formation of Co3O4 with spinel structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wales, D. J., Science 271, 925 (1996), and all the review articles in the Feb. 16 issue of Science (1996).Google Scholar
2.Kastner, M.A., Phys. Today 46 (1), 24 (1993).CrossRefGoogle Scholar
3.Lewis, L.N., Chem. Rev. 93, 2693 (1993).CrossRefGoogle Scholar
4.Freer, R., Nanoceramics (Institute of Materials, London, 1993).Google Scholar
5.Awschalom, D.D. and DiVincenzo, D.P., Phys. Today 48 (4), 43 (1995);Google Scholar
Shi, J., Gider, S., Babcock, K., and Awschalom, D. D., Science 271, 937 (1996).CrossRefGoogle Scholar
6.Smyth, J. F., Science 258, 414 (1992).Google Scholar
7.Braun, P.V., Osenar, P., and Stupp, S. I., Nature (London) 380, 325 (1996).CrossRefGoogle Scholar
8.Weller, H., Angew. Chem. 35, 1079 (1996).CrossRefGoogle Scholar
9.Ahmadi, T.S., Wang, Z. L., Green, T. C., Henglein, A., and El-Sayed, M. A., Science 28, 1924 (1996).CrossRefGoogle Scholar
10.Luedtke, W.D. and Landman, U., J. Phys. Chem. B 100, 13323 (1996).Google Scholar
11.Whetten, R.L., Khoury, J. T., Alvarez, M. M., Murthy, S., Vezmar, I., Wang, Z.L., Cleveland, C.C., Luedtke, W.D., and Landman, U., Adv. Mater. 8, 428 (1996).CrossRefGoogle Scholar
12.Dorogi, J., Gomez, J., Osifchin, R., Andres, R. P., and Refenberger, R., Phys. Rev. B 52, 9071 (1995).Google Scholar
13.Leff, D.V., Ohara, P. C., Heath, J.R., and Gelbart, W.M., J. Phys. Chem. 99, 7036 (1995).Google Scholar
14.Andres, R.P., Bein, T., Dorogi, M., Feng, S., Henderson, J.I., Kubiak, C.P., Mahoney, W., Osifchin, R. G., and Reifenberger, R., Science 273, 1690 (1996).Google Scholar
15.Harfenist, S.A., Wang, Z. L., Alvarez, M.M., Vezmar, I., and Whetten, R. L., J. Phys. Chem. B 100, 13904 (1996);Google Scholar
Harfenist, S. A., Wang, Z.L., Alvarez, M.M., Vezmar, I., and Whetten, R.L., Adv. Mater. 9, 817 (1997).CrossRefGoogle Scholar
16.Heath, J. R., Knobler, C. M., and Leff, D. V., J. Phys. Chem. B 101, 18 (1997).CrossRefGoogle Scholar
17.Murray, C.B., Kagan, C. R., and Bawendi, M. G., Science 270, 1335 (1995), and the references therein.Google Scholar
18.Brus, L., Appl. Phys. A 53, 465 (1991).Google Scholar
19.Alivisatos, A.P., Science 271, 933 (1996), and references therein.Google Scholar
20.Bentzon, M.D., Van Wonterghem, J., Mørup, S., Thölen, A., and Koch, C.J. W., Philos. Mag. B 60, 169 (1989).CrossRefGoogle Scholar
21.Mott, L., Billoudet, F., Lacaze, E., and Pileni, M-P., Adv. Mater. 8, 1018 (1996).CrossRefGoogle Scholar
22.Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K.E., Kerser, M., and Amstutz, A., Science 276, 384 (1997).CrossRefGoogle Scholar
23.Thomas, J. R., J. Appl. Phys. 37, 2914 (1966).CrossRefGoogle Scholar
24.Chen, J. P., Sorensen, C. M., Klabunde, K. J., and Hadjipanayis, G. C., Phys. Rev. B 51 (17), 11527 (1995).CrossRefGoogle Scholar
25.Papiper, E., Horny, P., Balard, H., Anthore, R., Petipas, C., and Martinet, A., J. Colloid Interface Sci. 94 (1), 207 (1983).CrossRefGoogle Scholar
26.Lippens, P.E. and Iannoo, M., Phys. Rev. B 39, 10935 (1989).Google Scholar
27.Brus, L.E., J. Chem. Phys. 79, 5566 (1983).Google Scholar
28.Yin, J. S. and Wang, Z. L., Phys. Rev. Lett. 79 (13), 2570 (1997).Google Scholar
29.Alivisatos, A.P., J. Phys. Chem. 100, 13226 (1996).Google Scholar
30.Ahmadi, T.S., Wang, Z. L., Green, T. C., Henglein, A., and El-Sayed, M. A., Science 28, 1924 (1996);Google Scholar
Wang, Z. L., Ahmadi, T. S., and El-Sayed, M.A., Surf. Sci. 380, 302 (1997).CrossRefGoogle Scholar
31.Herron, N., Calabrese, J. C., Farneth, W.E., and Wang, Y., Science 259, 1426 (1993).CrossRefGoogle Scholar
32.Vossmeyer, T., Reck, G., Katsikas, L., Haupt, E. T. K., Schulz, B., and Weller, H., Science 267, 1476 (1995).Google Scholar
33.Vossmeyer, T., Reck, G., Schulz, B., Katsikas, L., and Weller, H., J. Am. Chem. Soc. 117, 12881 (1995).CrossRefGoogle Scholar
34.Wang, Y. and Herron, N., J. Phys. Chem. 95, 525 (1991).Google Scholar
35.Yin, J. S. and Wang, Z. L., J. Phys. Chem. B 101, 8979 (1997).Google Scholar