Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T16:21:47.743Z Has data issue: false hasContentIssue false

Synthesis of nanoparticulate anatase and rutile crystallites at low temperatures in the Pluronic F127 microemulsion system

Published online by Cambridge University Press:  01 January 2011

Erik Nilsson*
Affiliation:
Applied Surface Chemistry, Dept. of Chemical and Biological Engineering, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
Hirotoshi Furusho
Affiliation:
Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden
Osamu Terasaki
Affiliation:
Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden; and Graduate School of EEWS (WCU), KAIST, Daejeon 305-701, Republic of Korea
Anders E.C. Palmqvist*
Affiliation:
Applied Surface Chemistry, Dept. of Chemical and Biological Engineering, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
*
a)Address all correspondence to these authors. e-mail: erik.nilsson@chalmers.se
Get access

Abstract

A low-temperature synthesis method for preparing nanosized TiO2 crystallites has been developed based on a Pluronic F127 microemulsion system. Both anatase and rutile polymorphs can be prepared, and there exists a temperature window between 40 and 50 °C where the formation of rutile is favored over anatase. At 60 °C and above, anatase is kinetically favored and only very slowly transforms to rutile at 60 °C. The results differ from previous observations regarding formation kinetics and temperature range for rutile formation as well as in the microscopic aggregation of the formed nanoparticles. This development of a low-temperature synthesis of crystalline titania nanoparticles within the Pluronic block copolymer system is an important and enabling step toward devising a direct synthesis route for the formation of ordered mesoporous and crystalline titania.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
2.Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).Google Scholar
3.Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. Chem., A 1, 1 (2000).Google Scholar
4.Oregan, B. and Grätzel, M.: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
5.Li, Y.Z., Lee, N.H., Lee, E.G., Song, J.S., and Kim, S.J.: The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals. Chem. Phys. Lett. 389, 124 (2004).Google Scholar
6.Kim, S.J., Lee, H.G., Kim, S.J., Lee, J.K., Lee, E.G.: Photoredox properties of ultrafine rutile TiO2 acicular powder in aqueous 4-chlorophenol, Cu-EDTA and Pb-EDTA solutions. Appl. Catal., A 242, 89 (2003)Google Scholar
7.Sun, J., Gao, L., and Zhang, Q.H.: Synthesizing and comparing the photocatalytic properties of high surface area rutile and anatase titania nanoparticles. J. Am. Ceram. Soc. 86, 1677 (2003).Google Scholar
8.Andersson, M., Österlund, L., Ljungstrom, S., and Palmqvist, A.: Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 106, 10674 (2002).Google Scholar
9.Andersson, M., Birkedal, H., Franklin, N.R., Ostomel, T., Boettcher, S., Palmqvist, A.E.C., and Stucky, G.D.: Ag/AgCl-loaded mesoporous anatase for photocatalysis. Chem. Mater. 17, 1409 (2005).Google Scholar
10.Grätzel, M. and Durrant, J.R.: Dye-sensitized mesoscopic solar cells, in Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, vol. 3, edited by Archer, M.D. and Nozik, A.J.(Imperial College Press, London, 2008).Google Scholar
11.Yanagisawa, T., Shimizu, T., Kuroda, K., and Kato, C.: The preparation of alkyltrimethylammonium–kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 63, 988 (1990).Google Scholar
12.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).Google Scholar
13.Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., Mccullen, S.B., Higgins, J.B., and Schlenker, J.L.: A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
14.Attard, G.S., Glyde, J.C., and Göltner, C.G.: Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378, 366 (1995).CrossRefGoogle Scholar
15.Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998).Google Scholar
16.Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., and Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structure. J. Am. Chem. Soc. 120, 6024 (1998).Google Scholar
17.Brinker, C.J., Lu, Y., Sellinger, A., and Fan, H.: Evaporation-Induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 (1999).Google Scholar
18.Alberius, P.C.A., Frindell, K.L., Hayward, R.C., Kramer, E.J., Stucky, G.D., and Chmelka, B.F.: General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14, 3284 (2002).Google Scholar
19.Nalwa, H.S.: Nanoclusters and Nanocrystals (American Scientific Publishers, Stevenson Ranch, CA, 2003),Google Scholar
20.Klabunde, K.J.: Nanoscale Materials in Chemistry (Wiley-Interscience, New York, 2001)Google Scholar
21.Hald, P., Becker, J., Bremholm, M., Pedersen, J.S., Chevallier, J., Iversen, S.B., and Iversen, B.B.: Supercritical propanol-water synthesis and comprehensive size characterisation of highly crystalline anatase TiO2 nanoparticles. J. Solid State Chem. 179, 2674 (2006).Google Scholar
22.Andersson, M., Kiselev, A., Österlund, L., and Palmqvist, A.E.C.: Microemulsion-mediated room-temperature synthesis of high surface area rutile and its photocatalytic performance. J. Phys. Chem. C 111, 6789 (2007).Google Scholar
23.Holmqvist, P., Alexandridis, P., and Lindman, B.: Modification of the microstructure in block copolymer-water-“oil” systems by varying the copolymer composition and the “oil” type: Small-angle x-ray scattering and deuterium-NMR investigation. J. Phys. Chem. B 102, 1149 (1998).Google Scholar
24.Scherrer, P.: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachricten. 2, 98 (1918).Google Scholar
25.Patterson, A.L.: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978 (1939).Google Scholar
26.Brunauer, S., Emmett, P.H., and Teller, E.J.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).Google Scholar
27.Wu, M.M., Long, J.B., Huang, A.H., Luo, Y.J., Feng, S.H., and Xu, R.R.: Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir 15, 8822 (1999).Google Scholar
28.Yuan, S., Sheng, Q.R., Zhang, J.L., Chen, F., and Anpo, M.: The roles of acid in the synthesis of mesoporous titania with bicrystalline structure. Mater. Lett. 58, 2757 (2004).CrossRefGoogle Scholar
29.Yu, J.G., Yu, J.C., Leung, M.K.P., Ho, W.K., Cheng, B., Zhao, X.J., and Zhao, J.C.: Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal. 217, 69 (2003).Google Scholar
30.Yu, J.G., Yu, J.C., Cheng, B., Hark, S.K., and Iu, K.: The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. J. Solid State Chem. 174, 372 (2003).Google Scholar
31.Zhang, H.Z. and Banfield, J.F.: Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
32.Zhang, H.Z. and Banfield, J.F.: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3481 (2000).Google Scholar