Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T00:51:23.441Z Has data issue: false hasContentIssue false

Synthesis of nanosized AlN:Eu2+ phosphors using a metal-organic precursor method

Published online by Cambridge University Press:  02 October 2014

Chao Cai
Affiliation:
Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei Anhui 230026, People's Republic of China
Luyuan Hao
Affiliation:
Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei Anhui 230026, People's Republic of China
Xin Xu*
Affiliation:
Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei Anhui 230026, People's Republic of China
Simeon Agathopoulos
Affiliation:
Materials Science and Engineering Department, University of Ioannina, GR-451 10 Ioannina, Greece
*
a)Address all correspondence to this author. e-mail: xuxin@ustc.edu.cn
Get access

Abstract

Nanosized Eu2+-doped AlN phosphor was successfully synthesized by a metal-organic precursor method for the first time. Aluminum and europium chlorides were simultaneously reacted with triethylamine in acetonitrile media to yield solid precipitates, which were transformed into nanosized AlN:Eu2+ phosphor powders upon calcination in an ammonia gas atmosphere. The possible reaction mechanism was proposed, which is in good agreement with the experimental results. The direct formation of Al–N bonds through a coordination reaction in solution is a key factor in the formation of well-crystallized AlN:Eu2+ grains at a moderately low temperature (1200 °C), which significantly suppresses abnormal grain growth and favors the formation of nanocrystalline (∼15 nm) particles with a homogeneous particle size distribution. Due to the homogeneous distribution of a relative high amount of Eu incorporation (2 wt%), the nanophosphors were effectively excited by UV light and featured an intense green emission band with a peak at 506 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chiu, Y-C., Huang, C-H., Lee, T-J., Liu, W-R., Yeh, Y-T., Jang, S-M., and Liu, R-S.: Eu2+-activated silicon-oxynitride Ca3Si2O4N2: A green-emitting phosphor for white LEDs. Opt. Express 19(10), A331 (2011).Google Scholar
Hirosaki, N., Xie, R.J., Kimoto, K., Sekiguchi, T., Yamamoto, Y., Suehiro, T., and Mitomo, M.: Characterization and properties of green-emitting beta-SiAlON: Eu2+ powder phosphors for white light-emitting diodes. Appl. Phys. Lett. 86(21), 211905 (2005).Google Scholar
Li, Y.Q., van Steen, J.E.J., van Krevel, J.W.H., Botty, G., Delsing, A.C.A., DiSalvo, F.J., de With, G., and Hintzen, H.T.: Luminescence properties of red-emitting M2Si5N8: Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J. Alloys Compd. 417(1–2), 273 (2006).Google Scholar
Schlotter, P., Schmidt, R., and Schneider, J.: Luminescence conversion of blue light emitting diodes. Appl. Phys. A: Mater. Sci. Process. 64(4), 417 (1997).Google Scholar
Mueller-Mach, R., Mueller, G.O., Krames, M.R., and Trottier, T.: High-power phosphor-converted light-emitting diodes based on III-nitrides. IEEE J. Sel. Top. Quantum Electron. 8(2), 339 (2002).CrossRefGoogle Scholar
Fukuda, V., Okada, A., and Albessard, A.K.: Luminescence properties of Eu2+-doped red-emitting Sr-containing SiAlON phosphor. Appl. Phys. Express 5(6), 062102 (3 pp.) (2012).Google Scholar
Xie, R.J., Hirosaki, N., Suehiro, T., Xu, F.F., and Mitomo, M.: A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 18(23), 5578 (2006).CrossRefGoogle Scholar
Yang, J.J., Song, Z., Bian, L., and Liu, Q.L.: An investigation of crystal chemistry and luminescence properties of Eu-doped pure-nitride alpha-sialon fabricated by the alloy-nitridation method. J. Lumin. 132(9), 2390 (2012).Google Scholar
Hagen, E., Yu, Y.D., Grande, T., Hoier, R., and Einarsrud, M.A.: Sintering of AlN using CaO-Al2O3 as a sintering additive: Chemistry and microstructural development. J. Am. Ceram. Soc. 85(12), 2971 (2002).Google Scholar
Jackson, T.B., Virkar, A.V., More, K.L., Dinwiddie, R.B., and Cutler, R.A.: High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors. J. Am. Ceram. Soc. 80(6), 1421 (1997).Google Scholar
Taniyasu, Y., Kasu, M., and Makimoto, T.: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441(7091), 325 (2006).CrossRefGoogle ScholarPubMed
Richardson, H.H., Van Patten, P.G., Richardson, D.R., and Kordesch, M.E.: Thin-film electroluminescent devices grown on plastic substrates using an amorphous AlN: Tb3+ phosphor. Appl. Phys. Lett. 80(12), 2207 (2002).CrossRefGoogle Scholar
Vetter, U., Zenneck, J., and Hofsass, H.: Intense ultraviolet cathodoluminescence at 318 nm from Gd3+-doped AlN. Appl. Phys. Lett. 83(11), 2145 (2003).Google Scholar
Sato, A., Azumada, K., Atsumori, T., and Hara, K.: Low-temperature metal organic chemical vapor deposition of luminescent manganese-doped aluminum nitride films. Appl. Phys. Lett. 87(2), 021907 (2005).Google Scholar
Yin, L-J., Yu, W., Xu, X., Hao, L-Y., and Simeon, A.: The effects of fluxes on AlN: Eu2+ blue phosphors synthesized by a carbothermal reduction method. J. Am. Ceram. Soc. 94(11), 3842 (2011).Google Scholar
Yin, L-J., Xu, X., Yu, W., Yang, J-G., Yang, L-X., Yang, X-F., Hao, L-Y., and Liu, X-J.: Synthesis of Eu2+-doped AlN phosphors by carbothermal reduction. J. Am. Ceram. Soc. 93(6), 1702 (2010).Google Scholar
Yin, L-J., Zhu, Q-Q., Yu, W., Hao, L-Y., Xu, X., Hu, F-C., and Lee, M-H.: Europium location in the AlN: Eu green phosphor prepared by a gas-reduction-nitridation route. J. Appl. Phys. 111(5), 053534 (2012).Google Scholar
Inoue, K., Hirosaki, N., Xie, R.J., and Takeda, T.: Highly efficient and thermally stable blue-emitting AlN: Eu2+ phosphor for ultraviolet white light-emitting diodes. J. Phys. Chem. C 113(21), 9392 (2009).Google Scholar
Takeda, T., Hirosaki, N., Xie, R.J., Kimoto, K., and Saito, M.: Anomalous Eu layer doping in Eu, Si co-doped aluminium nitride based phosphor and its direct observation. J. Mater. Chem. 20(44), 9948 (2010).Google Scholar
Hirosaki, N., Xie, R.J., Inoue, K., Sekiguchi, T., Dierre, B., and Tamura, K.: Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays. Appl. Phys. Lett. 91(6), 061101 (2007).Google Scholar
Kim, I.S. and Kumta, P.N.: Hydrazide sol-gel synthesis of nanostructured titanium nitride: Precursor chemistry and phase evolution. J. Mater. Chem. 13(8), 2028 (2003).Google Scholar
Weil, K.S. and Kumta, P.N.: Synthesis of a new ternary nitride, Fe4W2N, with a unique eta-carbide structure. J. Solid State Chem. 134(2), 302 (1997).Google Scholar
Weil, K.S. and Kumta, P.N.: Synthesis of ternary transition metal nitrides using chemically complexed precursors. Mater. Sci. Eng., B 38(1–2), 109 (1996).Google Scholar
Bem, D.S., Gibson, C.P., and Loye, H.C.Z.: Synthesis of intermetallic nitrides by solid-state precursor reduction. Chem. Mater. 5(4), 397 (1993).Google Scholar
Kim, J.Y., Sriram, M.A., McMichael, P.H., Kumta, P.N., Phillips, B.L., and Risbud, S.H.: New molecular precursors from the reaction of hydrazine and aluminum alkoxide for the synthesis of powders in the Al-O-N system. J. Phys. Chem. B 101(24), 4689 (1997).CrossRefGoogle Scholar
Li, K., Liu, Z.G., Yu, M.Y., Dong, S.Y., Wang, Q.L., Hao, X.P., and Cui, D.L.: Preparation of AIN nanoparticles by a water induced solid state reaction. Acta Chim. Sin. 62(12), 1144 (2004).Google Scholar
Maya, L., Cole, D.R., and Hagaman, E.W.: Carbon nitrogen pyrolyzates - Attempted preparation of carbon nitride. J. Am. Ceram. Soc. 74(7), 1686 (1991).Google Scholar
McKenzie, D.R., McPhedran, R.C., Savvides, N., and Cockayne, D.J.H.: Analysis of films prepared by plasma polymerization of acetylene in a d.c. magnetron. Thin Solid Films 108(3), 247 (1983).CrossRefGoogle Scholar
Han, H.X. and Feldman, B.J.: Structural and optical-properties of amorphous-carbon nitride. Solid State Commun. 65(9), 921 (1988).Google Scholar
Sacconi, L. and Sabatini, A.: The infra-red spectra of metal(ii)-hydrazine complexes. J. Inorg. Nucl. Chem. 25(11), 1389 (1963).Google Scholar
Friedman, H. and Briks, L.S.: A Geiger counter spectrometer for x-ray fluorescence analysis. Rev. Sci. Instrum. 19(5), 323 (1948).Google Scholar
Wanjun, T. and Donghua, C.: Photoluminescent properties of ABaPO4:Eu (A = Na, K) phosphors prepared by the combustion-assisted synthesis method. J. Am. Ceram. Soc. 92(5), 1059 (2009).Google Scholar
Lacanilao, A., Wallez, G., Mazerolles, L., Dubot, P., Binet, L., Pavageau, B., Servant, L., Buissette, V., and Le Mercier, T.: Structural analysis of thermal degradation and regeneration in blue phosphor BaMgAl10O17:Eu2+based upon cation diffusion. Solid State Ionics 253, 32 (2013).Google Scholar
Chung, S-L. and Chou, W-C.: Combustion synthesis of Ca2Si5N8: Eu2+ phosphors and their luminescent properties. J. Am. Ceram. Soc. 96(7), 2086 (2013).Google Scholar
Storhoff, B.N. and Lewis, H.C.: Organonitrile complexes of transition-metals. Coord. Chem. Rev. 23(1), 1 (1977).Google Scholar
Walton, R.A.: Reactions of metal halides with alkyl cyanides. Q. Rev. 19(2), 126 (1965).Google Scholar
Sriram, M.A., Kumta, P.N., and Ko, E.I.: Interaction of solvent and the nature of adducts on the chemical synthesis of molybdenum nitride powders. Chem. Mater. 7(5), 859 (1995).Google Scholar
Kim, I.S. and Kumta, P.N.: Hydrazide sol-gel process: A novel approach, for synthesizing nanostructured titanium nitride. Mater. Sci. Eng., B 98(2), 123 (2003).Google Scholar
Colque, S. and Grange, P.: Proposal for a new mechanism for the transformation of alumina into aluminum nitride. J. Mater. Sci. Lett. 13(9), 621 (1994).CrossRefGoogle Scholar
Sakuma, K., Hirosaki, N., and Xie, R.J.: Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors. J. Lumin. 126(2), 843 (2007).Google Scholar