Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T06:49:06.320Z Has data issue: false hasContentIssue false

Synthesis of Nitrogen-Doped Titanium Oxide Nanostructures Via a Surfactant-Free Hydrothermal Route

Published online by Cambridge University Press:  03 March 2011

Chang Houn Rhee
Affiliation:
Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Jae Sung Lee
Affiliation:
Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
Soo Hyun Chung
Affiliation:
Korea Institute of Energy Research, Daejon 305-343, Republic of Korea
Get access

Abstract

Nitrogen-doped titanium oxides nanostructures were synthesized by a new method proposed here from titanium oxysulfate precursor in a NH4OH solution under hydrothermal conditions without any extra templates as structure driving agents. The material synthesized with NH4OH was an ammonium titanate and showed curled nanosheets, nanofibers or nanorods morphologies depending on the molar ratio of NH4OH to titanium precursor and the hydrothermal temperature. The nanofibrous titanates had a high surface area over 500 m2 g−1 and a pore volume of 0.72 cm3 g−1. The calcination of as-synthesized material at 673 K produced a titanium oxynitride TiO2−xNx with anatase phase, which absorbed visible light. Ion exchange of ammonium ion of the titanate with sodium Na2Ti3O7−xNx enhanced the thermal stability of the titanate phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1993).CrossRefGoogle Scholar
2Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
3Nath, M. and Rao, C.N.R.: New metal disulfide nanotubes. J. Am. Chem. Soc. 123, 4841 (2001).CrossRefGoogle ScholarPubMed
4Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Dem|$˘sar, J., Stadelmann, P., Lévy, F. and Mihailovic, D.: Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479 (2001).CrossRefGoogle ScholarPubMed
5Harada, M. and Adachi, M.: Surfactant-mediated fabrication of silica nanotubes. Adv. Mater. 12, 839 (2000).3.0.CO;2-9>CrossRefGoogle Scholar
6Lee, H.C., Kim, H.J., Chung, S.H., Lee, K.H., Lee, H.C. and Lee, J.S.: Synthesis of unidirectional alumina nanostructures without added organic. J. Am. Chem. Soc. 125, 2882 (2003).CrossRefGoogle ScholarPubMed
7Kim, H.J., Lee, H.C., Rhee, C.H., Chung, S.H., Lee, K.H., Lee, H.C. and Lee, J.S.: Alumina nanotubes containing lithium of high ion mobility. J. Am. Chem. Soc. 125, 13354 (2003).CrossRefGoogle ScholarPubMed
8Niederberger, M., Muhr, H.-J., Krumeich, F., Bieri, F., Günther, D. and Nesper, R.: Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem. Mater. 12, 1995 (2000).CrossRefGoogle Scholar
9Niederberger, M., Krumeich, F., Muhr, H.-J., Müller, M. and Nesper, R.: Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J. Mater. Chem. 11, 1941 (2001).CrossRefGoogle Scholar
10Lee, K., Seo, W.S. and Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408 (2003).CrossRefGoogle ScholarPubMed
11Rao, C.N.R., Satishkumar, B.C. and Govindaraj, A.: Zirconia nanotubes. Chem. Commun. 16, 1581 (1997).CrossRefGoogle Scholar
12Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 37, 238 (1972).Google Scholar
13Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V. and Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).CrossRefGoogle Scholar
14O’Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
15Matsuda, S. and Kato, A.: Titanium oxide based catalysts—a review. Appl. Catal. 8, 149 (1983).CrossRefGoogle Scholar
16Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
17Melendres, C.A., Narayanasamy, A., Maroni, V.A. and Siegel, R.W.: Raman spectroscopy of nanophase TiO2. J. Mater. Res. 4, 1246 (1989).CrossRefGoogle Scholar
18Hoyer, P.: Formation of titanium dioxide nanotube array. Langmuir 12, 1411 (1996).CrossRefGoogle Scholar
19Jung, J.H., Kobayashi, H., Van Bommel, K.J.C., Shinkai, S. and Shimizu, T.: Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater. 14, 1445 (2002).CrossRefGoogle Scholar
20Yoo, S., Akbar, S.A. and Sandhage, K.H.: Nanocarving of bulk titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas. Adv. Mater. 16, 260 (2004).CrossRefGoogle Scholar
21Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
22Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
23Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y.R. and Gedanken, A.: Sonochemical synthesis of titania whiskers and nanotubes. Chem. Commun. 24, 2616 (2001).CrossRefGoogle Scholar
24Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y. and Peng, L.-M.: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
25Seo, D.-S., Lee, J.-K. and Kim, H.: Preparation of nanotube-shaped TiO2 powder. J. Cryst. Growth 229, 428 (2001).CrossRefGoogle Scholar
26Chen, Q., Du, G.H., Zhang, S. and Peng, L-M.: The structure of trititanate nanotubes. Acta Crystallogr. B58, 587 (2002).CrossRefGoogle Scholar
27Yuan, Z.-Y., Zhou, W. and Su, B.-L.: Hierarchical interlinked structure of titanium oxide nanofibers. Chem. Commun. 11, 1201 (2002).Google Scholar
28Chen, Y.-F., Lee, C.-Y., Yeng, M.-Y. and Chiu, H.-T.: Preparing titanium oxide with various morphologies. Mater. Chem. Phys. 81, 39 (2003).CrossRefGoogle Scholar
29Brunauer, S., Emmett, P.H. and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
30Kruk, M., Jaroniec, M. and Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267 (1997).CrossRefGoogle Scholar
31Sing, K.S.W., Evertt, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. and Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
32Zhu, H., Gao, X., Lan, Y., Song, D., Xi, Y. and Zhao, J.: Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J. Am. Chem. Soc. 126, 8380 (2004).CrossRefGoogle ScholarPubMed
33Sakatani, Y., Koite, H., and Takeuchi, Y.: Titanium oxide photocatalyst coating material. Japanese Patent 322816, 2001.Google Scholar
34Tokudome, H. and Miyauchi, M.: N-doped TiO2 nanotube with visible light activity. Chem. Lett 33, 1108 (2004).CrossRefGoogle Scholar
35Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J. and Gole, J.L.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).CrossRefGoogle Scholar
36Gole, J.L., Stout, J.D., Burda, C., Lou, Y. and Chen, X.: Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004).CrossRefGoogle Scholar
37Rhee, C.H., Bae, S.W. and Lee, J.S.: Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chem. Lett. 34, 2 (2005).CrossRefGoogle Scholar
38Ramis, G., Busca, G., Lorenzelli, V. and Forzatti, P.: Fourier transform infrared study of the adsorption and co-adsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase. Appl. Catal. 64, 243 (1990).CrossRefGoogle Scholar
39Saha, N.C. and Tompkins, H.G.: Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992).CrossRefGoogle Scholar