Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T23:24:07.276Z Has data issue: true hasContentIssue false

Synthesis of porosity controlled ceramic membranes

Published online by Cambridge University Press:  31 January 2011

Qunyin Xu
Affiliation:
Water Chemistry Program, University of Wisconsin, 660 North Park Street, Madison, Wisconsin 53706
Marc A. Anderson
Affiliation:
Water Chemistry Program, University of Wisconsin, 660 North Park Street, Madison, Wisconsin 53706
Get access

Abstract

Porosity control in ceramic membranes has been achieved by controlling particle packing densities in sol-gel processing. TiO2 xerogels with two mean pore radii of 0.7 and 1.7 nm and a porosity varying from 30% to 52% have been obtained. ZrO2 xerogels with a mean pore radius of 0.7 nm and a porosity varying from 7% to 34% have also been prepared. The principle of controlling porosity is to make spongy aggregates and to control the degree of aggregation. Experiments have been conducted to show that spongy aggregates can be produced by gradually removing protons from the strongly charged particles. Viscosity techniques have been used to measure the relative volume fraction of the dispersed phase which, in turn, provides information on aggregate structures. Two aggregation models have been proposed to explain different structural aggregates formed through thermal destabilization in the highly charged system and through charge neutralization by gradually removing charge from the particles in the system.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Merin, U. and Daufin, G., Proc. 1st Int. Conf. on Inorganic Membranes, 271 (1989).Google Scholar
2Branger, J. L., Audinos, R., Noguera, J., and Chignac, M., ibid., 243 (1989).Google Scholar
3Nakajima, M., Jimbo, N., Nabetani, H., and Watanabe, A., ibid., 257 (1989).Google Scholar
4Deschamps, A., Walther, C., Bergez, P., and Charpin, J., ibid., 237 (1989).Google Scholar
5Fablani, R. C., Vatteroni, R., Nannetti, C. A., and Bimbi, L., ibid. 497 (1989).Google Scholar
6Iwamoto, K., Lee, Y. T., and Seno, M., ibid., 511 (1989).Google Scholar
7Ito, N., Haratani, K., and Shindo, Y., Jpn. Kokai Tokyo Koho, 5 (1989).Google Scholar
8Uhlhorn, R. J. R., Huis in 't Veld, M. H. B. J., Keizer, K., and Burggraaf, A. J., Sci. Ceram. 14, 551 (1988).Google Scholar
9Maravich, R., Sundstrom, G. P., and Bates, W. T., Ultrapure Water 6 (6), 18,20,22–24,26,28 (1989).Google Scholar
10Matsumoto, Y. and Totsuka, Y., Kagaku Kogaku 51 (10), 764 (1987).Google Scholar
11Megiris, C. E., Nam, S. W., and Gavalas, G. R., Proc. 1st Int. Conf. on Inorganic Membranes, 355 (1989).Google Scholar
12Zaspalis, V. T., van, W. Praag, Keizer, K., van Ommen, J. G., Ross, J. R. H., and Burggraaf, A. J., ibid., 367 (1989).Google Scholar
13Hazbun, E. A., Patent, U. S. 4791079 (1988).Google Scholar
14Niedrach, L. W., Science 207 (4436), 1200 (1980).CrossRefGoogle Scholar
15Hettiarachchi, S. and Macdonald, D. D., J. Electrochem. Soc. 131 (9), 2206 (1984).CrossRefGoogle Scholar
16Lin, Y. S., DE, L. G. J. Haart, DeVries, K. J., and Burggraaf, A. J., Proc. Electrochem. Soc. 89–11 (Proc. Int. Symp. Solid Oxide Fuel Cells, 1st, 1989), p. 67.Google Scholar
17Sabate, J., Anderson, M. A., Kikkawa, H., Xu, Q., and Hill, C. G., Jr., Envir. Sci. Tech. (1990, submitted).Google Scholar
18Newsfront, Chem. Eng., June 9, 19 (1986).Google Scholar
19Yoldas, B. E., J. Mater. Sci. 10, 1856 (1975).CrossRefGoogle Scholar
20Anderson, M. A., Gieselmann, M. J., and Xu, Q., J. Membr. Sci. 39 (3), 243 (1988).CrossRefGoogle Scholar
21Xu, Q. and Anderson, M. A., in Multicomponent Ultrafine Microstructures, edited by McCandish, L. E., Kear, B. H., Polk, D. E., and Siegel, R. W. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 41.Google Scholar
22Gieselmann, M. J. and Anderson, M. A., J. Am. Ceram. Soc. 72, 980 (1989).CrossRefGoogle Scholar
23Mooney, M., J. Coll. Sci. 6, 162 (1951).CrossRefGoogle Scholar
24Krieger, I. M., Adv. Coll. and Interface Sci. 3, 111 (1972).CrossRefGoogle Scholar
25Frankel, N. A. and Acrivos, A., Chem. Eng. Sci. 22, 847 (1967).CrossRefGoogle Scholar
26Ackermann, N. L. and Shen, H. T., A. I. Chem. Eng. J. 25, 327 (1979).Google Scholar
27Graham, A. L., Rheology Research Centre Report No. 62, University of Wisconsin, June 1980.Google Scholar
28Her, R. K., Colloid Chemistry of Silica and Silicates (Cornell University Press, Ithaca, NY, 1955), p. 96.Google Scholar
29Tejedor-Tejedor, M. I. and Anderson, M. A., Langmuir 2, 203 (1986).CrossRefGoogle Scholar
30Russel, W. B., J. Fluid Mech. 85, 673 (1978).CrossRefGoogle Scholar
31Lever, D. A., J. Fluid Mech. 92, 421 (1979).CrossRefGoogle Scholar
32Russel, W. B., J. Fluid Mech. 85, 209 (1978).CrossRefGoogle Scholar
33Meakin, P., Phys. Rev. Lett. 51, 119 (1983).Google Scholar
34Kolb, M., Botet, R., and Jullien, R., Phys. Rev. Lett. 51 1123 (1983).CrossRefGoogle Scholar
35Hackley, V. A. and Anderson, M. A., Langmuir 5, 191 (1989).CrossRefGoogle Scholar
36Schaefer, D. W., Martin, J. E., Wiltzius, P., and Cannell, D. S., Kinetics of Aggregation, edited by Family, F. and Landan, D. P. (North Holland, New York, 1984).Google Scholar