Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:11:20.130Z Has data issue: false hasContentIssue false

Synthesis of rutile titania powders: Agglomeration, dissolution, and reprecipitation phenomena

Published online by Cambridge University Press:  31 January 2011

Sascha M. Klein
Affiliation:
Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106
Joon Hwan Choi
Affiliation:
Chemical Engineering Department, University of California at Santa Barbara, Santa Barbara, California 93106
David J. Pine
Affiliation:
Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106
Get access

Abstract

Rutile titania powders were synthesized via a sol-gel/hydrothermal process using nitric acid as the catalyst. A molar acid to alkoxide ratio of 10 and a water to alkoxide molar ratio of 250 produced 100% rutile powders when precipitated below 45 °C. Higher temperatures yielded initially either anatase or mixtures of anatase and rutile. Spherulitic growth produced cauliflower-shaped agglomerates with a mean size of 760 nm. The agglomerates could be broken apart into approximately 100-nm large broomlike agglomerates via a dissolution and reprecipitation process when reacted with approximately 2.4 molar nitric acid. Transmission electron microscopy observations showed that the broomlike agglomerate consisted of linear clusters of rodlike agglomerates composed of crystallographically aligned, primary particles approximately 4 nm in size.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, H.W., Crystal Chemistry and Refractivity (Dover Publications, 1996).Google Scholar
2.Hummel, F.A., Introduction to Phase Equilibria in Ceramic Systems (Marcel Dekker, 1984).Google Scholar
3.Ferroni, M., Guidi, V., and Martinelli, G., Nano-Struct. Mater. 7, 709 (1996).CrossRefGoogle Scholar
4.Ma, Z., Yue, Y., Deng, X., and Gao, Z., J. Molecular Catal. A: Chem. 178, 97 (2002).CrossRefGoogle Scholar
5.Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissoertel, F., Salbeck, J., Spreitzer, H., and Grätzel, M., Nature 395, 583 (1998).CrossRefGoogle Scholar
6.Hsu, W.P., Yu, R., and Matijevic, E., Dyes Pigments 19, 179 (1992).CrossRefGoogle Scholar
7.Fowles, G.R., Introduction to Modern Optics (Dover Publications, New York, 1975).Google Scholar
8.Biswas, R., Sigalas, M.M., Subramania, G., Ho, K-M., Phys. Rev. B 57, 3701 (1998).CrossRefGoogle Scholar
9.Manoharan, V.N., Imhof, A., Thorne, J.D., and Pine, D.J., Adv. Mater. 13, 447 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
10.Subramanian, G., Manoharan, V.N., Thorne, J.D., and Pine, D.J., Adv. Mater. 11, 1261 (1999).3.0.CO;2-A>CrossRefGoogle Scholar
11.Greenwood, N.N. and Earnshaw, E., Chemistry of the Elements (Pergamon Press, 1984).Google Scholar
12.Siegel, R.W., Ramasamy, S., Hahn, H., Zongquan, L., and Ting, L., J. Mater. Res. 3, 1367 (1996).CrossRefGoogle Scholar
13.Chen, Q., Qian, Y., Chen, Z., Zhou, G., and Zhang, Y., Mater. Lett. 22, 77 (1995).CrossRefGoogle Scholar
14.Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, 1990).Google Scholar
15.Cheng, H., Ma, J., Zhao, Z., and Qi, L., Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
16.So, W.W., Park, S.B., Kime, K.J., and Moon, S.J., J. Colloid Interface Sci. 191, 398 (1997).CrossRefGoogle Scholar
17.Penn, R.L. and Banfield, J.F., Geochim. Cosmochim. Acta. 63, 1549 (1999).CrossRefGoogle Scholar
18.So, W.W., Park, S.B., and Moon, S.J., J. Mater. Sci. Lett. 17, 1219 (1998).CrossRefGoogle Scholar
19.Keesmann, I., Z Anorg. Allg. Chem. 346, 30 (1966).CrossRefGoogle Scholar
20.Holleman, A.F. and Wiberg, E., Lehrbuch der Anorganischen Chemie (Walter de Gruyter, 1985).CrossRefGoogle Scholar
21.Gamboa, J.A. and Pasquevich, D.M., J. Am. Ceram. Soc. 75, 2934 (1992).CrossRefGoogle Scholar
22.Zhang, H. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar
23.Ding, X-Y., Liu, X-H., and He, Y-Z., J. Mater. Sci. Lett. 15, 1789 (1996).CrossRefGoogle Scholar
24.Ahn, J-P., Park, J-K., and Kim, G., Nano-Struct. Mater. 10, 1087 (1998).CrossRefGoogle Scholar
25.Kostic, E.M., Kiss, S.J., Boskovic, S.B., and Zec, S.P., Am. Ceram. Soc. Bull. 76, 60 (1997).Google Scholar
26.Sen, S., Ram, M.L., Roy, S., and Sarkar, B.K., J. Mater. Res. 14, 841 (1999).CrossRefGoogle Scholar
27.Suwa, Y., Kato, Y., Hirano, S., and Naka, S., J. Soc. Mater. Japan 31, 955 (1982).CrossRefGoogle Scholar
28.Bacsa, R.R. and Grätzel, M., J. Am. Ceram. Soc. 79, 2185 (1996).CrossRefGoogle Scholar
29.Nomura, K., Takasuka, Y., and Hirano, S., Third Euro-Ceram. 1, 381 (1993).Google Scholar
30.Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T., and Yangida, S., J. Mater. Chem. 11, 1694 (2001).CrossRefGoogle Scholar
31.Hague, D.C. and Mayo, M.J., J. Am. Ceram. Soc. 77, 1957 (1994).CrossRefGoogle Scholar
32.Spurr, R.A. and Myers, H., Anal. Chem. 29, 760 (1957).CrossRefGoogle Scholar
33.Busch, S., Dolhaine, H., DuChesne, A., Heinz, S., Hochrein, O., Laeri, F., Podebrand, O., Vietze, U., Weiland, T., and Kniep, R., Eur. J. Inorg. Chem. 1643 (1999).Google Scholar
34.Qi, L., Cölfen, H., Antonietti, M., Chem. Mater. 12, 2392 (2000).CrossRefGoogle Scholar
35.Laarz, E., Zhmud, B.V., and Bergström, L., J. Am. Ceram. Soc. 83, 2394 (2000).CrossRefGoogle Scholar