Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:09:36.975Z Has data issue: false hasContentIssue false

Synthesis of sinteractive single-phase microstructure yttrium disilicate precursor powder using hydrothermal processing

Published online by Cambridge University Press:  31 January 2011

P. A. Trusty
Affiliation:
IRC in Materials for High Performance Applications, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
K. C. Chan
Affiliation:
School of Metallurgy & Materials, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
C. B. Ponton
Affiliation:
School of Metallurgy & Materials and IRC in Materials for High Performance Applications, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Get access

Abstract

This paper is the first report of the synthesis of a sinteractive single-phase microstructure yttrium disilicate precursor powder using hydrothermal processing. The effect of the pH of the precursor chemicals on the ease of formation of a single-phase material was investigated using x-ray diffraction, TEM, and SEM. Under very acidic conditions (pH 1), the formation of yttrium chloride, in addition to the yttrium disilicate precursors, produced a powder that absorbed moisture, did not sinter well, and produced a two-phase interpenetrating microstructure after sintering. At pH 6, yttrium chloride no longer formed, but the interpenetrating network persisted after sintering. Only under basic conditions (pH 10) did single-phase yttrium disilicate form after sintering. This work is noteworthy because the calcination time of 1 h required for the formation of this ceramic at 1050 °C is over an order of magnitude lower than the calcination times of over 100 h required when calcined in the temperature range 900 °C to 1150 °C, as reported previously by other workers.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Warshaw, I. and Roy, R., in Progress in Science and Technology of the Rare Earths, 1 (Pergamon Press, New York, 1964), p. 215.Google Scholar
2.Bondar, I. A and Toropov, N. A., Mater. Res. Bull. (Penn. State University, 1967) Vol. 2, p. 479.Google Scholar
3.Felsche, J., J. Less Common Metals 21, 114 (1970).CrossRefGoogle Scholar
4.Liddell, K. and Thompson, D. P., Br. Ceram. Trans. J. 85, 1722 (1986).Google Scholar
5.Leskelä, M. and Jyrkäs, K., J. Am. Ceram. Soc. 70, C-160C161 (1987).CrossRefGoogle Scholar
6.Giesche, H. and Matijević, E., J. Mater. Res. 9, 436450 (1994).CrossRefGoogle Scholar
7.Bondar, I. A., Kolpakova, A. A., Markovsku, L., Sokolov, A. N., Tarasova, L. E., and Toropov, N. A., Bul. Acad. Sci. USSR 33, 1052 (1969).Google Scholar
8.Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramists, 1969 Supplement (The American Ceramic Society, Inc., Westerville, OH, 1969), Fig. 2388.Google Scholar
9.Drummond, C. H., Lee, W. E., Sanders, W. A., and Kiser, J. D., Ceram. Eng. Sci. Proc. 9, 13431353 (1988).CrossRefGoogle Scholar
10.Tsuge, A., Nishida, K., and Komatsu, M., J. Am. Ceram. Soc. 58, 323326 (1975).CrossRefGoogle Scholar
11.Clarke, D. R. and Thomas, G., J. Am. Ceram. Soc. 61, 114118 (1978).CrossRefGoogle Scholar
12.Hanada, T., Shinoda, T., Tanabe, S., and Soga, N., J. Am. Ceram. Soc. 78, 13831386 (1995).CrossRefGoogle Scholar
13.Trusty, P. A., Boccaccini, A. R., Butler, E. G., and Ponton, C. B., Mater. Manuf. Process. 10, 1215 (1995).CrossRefGoogle Scholar
14.Ito, J. and Johnson, H., Am. Mineralogist 53, 19401952 (1968).Google Scholar
15.Nekrasov, I. Ya and Kashirtseva, G. A., Doklady Akad. Nauk SSSR 231, 166169 (1976).Google Scholar
16.Bataliyeva, N. G., Bondar, I. A., and Siderenko, G. A., Doklady Akad. Nauk SSSR 173, 339 (1967).Google Scholar
17.Giesche, H. and Matijević, E., J. Mater. Res. 9, 436450 (1994).CrossRefGoogle Scholar
18.Trusty, P. A., Progress Report II to DRA (IRC in Materials, The University of Birmingham, 1994), pp. 18.Google Scholar
19.Trusty, P. A and Ponton, C. B., Progress Report III to DRA (IRC in Materials, The University of Birmingham, 1994), pp. 110.Google Scholar
20.Leskelä, M. and Niskavaara, H., Finn. Chem. Lett., 2931 (1982).Google Scholar
21.Trusty, P. A., MacLaren, I., and Ponton, C. B., “Enhanced Formation of Y2Si2O7 via Hydrothermal Processing,” Int. Symp. on Solvothermal and Hydrothermal Processes, September 1–3, Takamatsu, Japan (1997).Google Scholar