Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T16:20:16.971Z Has data issue: false hasContentIssue false

Synthesis of thin superconducting HgBa2CaCu2O6+δ films by post-annealing of laser-ablated precursors

Published online by Cambridge University Press:  31 January 2011

A. Brazdeikis
Affiliation:
Department of Physics, Materials Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
A. S. FlodstrÖm
Affiliation:
Department of Physics, Materials Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
I. Bryntse
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
Get access

Abstract

Superconducting HgBa2CaCu2O6+δ (Hg-1212) thin films have been prepared by laser ablation followed by post-annealing at high temperatures. Two synthesis methods were investigated, using (1) direct reaction of Hg–Ba–Ca–Cu–O precursor films in a Hg-controlled ambience, and (2) thermal diffusion of Hg into Ba–Ca–Cu–O precursor films in a controlled atmosphere containing both Hg- and Tl-bearing species. Effects of the annealing temperature, time, and bulk material composition on the Hg-1212 film and residual impurities are presented. Surface morphologies, growth defects, and transport properties of Hg-1212 on SrTiO3 substrates are discussed. Formation of Hg-1212 films on MgO and LaAlO3 substrates is briefly described.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Putilin, S. N., Antipov, E. V., Chmaissem, O., and Marezio, M., Nature 362, 226 (1993).CrossRefGoogle Scholar
2.Schilling, A., Cantoni, M., Guo, J. D., and Ott, H. R., Nature 363, 56 (1993).CrossRefGoogle Scholar
3.Gao, L., Xue, Y. Y., Chen, F., Xiong, Q., Meng, R. L., Ramirez, D., Chu, C. W., Eggert, J. H., and Mao, H. K., Phys. Rev. B 50, 4260 (1994).CrossRefGoogle Scholar
4.Tsuei, C. C., Gupta, A., Trafas, G., and Mitzi, D., Science 263, 1259 (1994).CrossRefGoogle Scholar
5.Yun, S. H., Wu, J. Z., Kang, B.W., Ray, A. N., Gapud, A., Yang, Y., Farr, R., Sun, G. F., Yoo, S. H., Xin, Y., and He, W. S., Appl. Phys. Lett. 67, 2866 (1995).CrossRefGoogle Scholar
6.Krusin-Elbaum, L., Tsuei, C. C., and Gupta, A., Nature 373, 679 (1995).CrossRefGoogle Scholar
7.Gupta, A., Sun, J. Z., and Tsuei, C. C., Science 265, 1075 (1994).CrossRefGoogle Scholar
8.Wang, Y. Q., Meng, R. L., Sun, Y. Y., Ross, K., Huang, Z. J., and Chu, C. W., Appl. Phys. Lett. 63, 3084 (1993).CrossRefGoogle Scholar
9.Adachi, H., Mizuno, K., Satoh, T., and Setsune, K., Jpn. J. Appl. Phys. 32, L1798 (1993).CrossRefGoogle Scholar
10.Adachi, H., Satoh, T., and Setsune, K., Appl. Phys. Lett. 63, 3628 (1993).CrossRefGoogle Scholar
11.Miyashita, S., Higuma, H., and Uchikawa, F., Jpn. J. Appl. Phys. 33, L931 (1994).CrossRefGoogle Scholar
12.Higuma, H., Miyashita, S., and Uchikawa, F., Appl. Phys. Lett. 65, 743 (1994).CrossRefGoogle Scholar
13.Brazdeikis, A., Hirschauer, B., Flodström, A. S., and Bryntse, I., in Laser-Induced Thin Film Processing, edited by Jan J., Dubowski (SPIE 2403 Bellingham, 1995), p. 175.CrossRefGoogle Scholar
14.Brazdeikis, A., Flodström, A. S., and Bryntse, I., Physica C 265, 1 (1996).CrossRefGoogle Scholar
15.Foong, F., Bedard, B., Xu, Q. L., and Liou, S. H., Appl. Phys. Lett. 68, 1153 (1996).CrossRefGoogle Scholar
16.Yun, S. H. and Wu, J. Z., Appl. Phys. Lett. 68, 862 (1996).CrossRefGoogle Scholar
17.Yun, S. H., Wu, J. Z., Tidrow, S. C., and Eckart, D. W., Appl. Phys. Lett. 68, 2565 (1996).CrossRefGoogle Scholar
18.Wu, X. S., Shao, H.M., Yao, X. X., Jiang, S. S., Wang, D. W., Wu, Z. H., Cai, Y.M., Shen, L. J., and Wu, Z., Appl. Phys. Lett. 68, 1723 (1996).CrossRefGoogle Scholar
19.Wu, X. S., Shao, H.M., Jang, S. S., and Yao, X. X., Solid State Commun. 99, 733 (1996).CrossRefGoogle Scholar
20.Khasanova, N. R., Bryntse, I., and Antipov, E. V., Physica C 247, 197 (1995).CrossRefGoogle Scholar
21.Bryntse, I. and Kareiva, A., Physica C 251, 115 (1995).CrossRefGoogle Scholar
22.Chmaissem, O., Wessels, L., and Sheng, Z. Z., Physica C 230, 231 (1994).CrossRefGoogle Scholar
23.Marezio, M., Capponi, J-J., Radaelli, P-G., Edwards, P. P., Armstrong, A. R., and David, W. I. F., Eur. J. Solid State Inorg. Chem. 31, 843 (1994).Google Scholar
24. See “near coincidence site lattice” theory, which is applied to YBa2Cu3O7–8 films: Hwang, D. M., Ravi, T. S., Ramesh, R., Chan, Siu-Wai, Chen, C. Y., Nazar, L., Wu, X. D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990), and to Tl2Ba2Ca2Cu3Ox: Liou, S.H. and Wu, C. Y., Appl. Phys. Lett. 60, 2803 (1992).CrossRefGoogle Scholar
25. The cubic perovskite, LaAlO3 (100) is known to have different polar surface structures, either LaO or AlO2 layers, while the SrTiO2 surface, for instance, is terminated by nonpolar TiO2 or SrO layers.Google Scholar
26.Ruckenstein, E. and Cheung, C. T., J. Mater. Res. 4, 1116 (1989).CrossRefGoogle Scholar
27.de Rochemont, L. P. and Squillante, M. R., in Thallium-Based High-Temperature Superconductors, edited by Hermann, A. M. and Yakhmi, J. V. (Marcel Dekker Inc. M, New York, 1994), p. 246.Google Scholar
28. The reproducibility here is associated with a variation in the volume of the c-axis oriented Hg-1212 and its out-of-planeorientation, determined by rocking-curve XRD measurements.Google Scholar
29.Reich, S. and Tsabba, Y., Physica C 254, 21 (1995).Google Scholar
30.Sandhage, K. H. and Gallagher, P. K., in Thallium-Based High-Temperature Superconductors, edited by Hermann, A. M. and Yakhmi, J. V. (Marcel Dekker Inc., New York, 1994), p. 387 and references therein.Google Scholar
31.DeLuca, J. A., Garbauskas, M. F., Bolon, R. B., McMullen, J. G., Balz, W. E., and Karas, P. L., J. Mater. Res. 7, 1415 (1991).CrossRefGoogle Scholar