Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T16:41:50.405Z Has data issue: false hasContentIssue false

Synthesis, structure, and magnetic properties of iron-oxide nanowires

Published online by Cambridge University Press:  03 March 2011

Matej Pregelj*
Affiliation:
Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Polona Umek
Affiliation:
Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Boštjan Drolc
Affiliation:
Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Boštjan Jančar
Affiliation:
Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
Zvonko Jagličič
Affiliation:
Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
Robert Dominko
Affiliation:
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
Denis Arčon
Affiliation:
Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia; and Faculty of Mathematics and Physics, Jadranska 19, University of Ljubljana, 1000 Ljubljana, Slovenia
*
a) Address all correspondence to this author. e-mail: matej.pregelj@ijs.si
Get access

Abstract

Iron-oxide nanowires were synthesized by a hydrothermal treatment of Fe(OH)3 dispersion in NaOH. The obtained materials were first structurally investigated by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis techniques. Their magnetic properties were then examined by superconducting quantum interference device and electron paramagnetic resonance methods. A typical nanowire measured 10–15 nm in diameter and 600 nm in length. All the structural and magnetic investigations were consistent with the nanowire goethite structure. The nanowire Neél transition temperature occurred at 375 K; i.e., it was lowered by 25 K with respect to the corresponding goethite bulk value. The shift in the ordering temperature was suggested to be a consequence of a growing importance of strains and surface effects at the nanoscale. We were also able to irreversibly convert goethite nanowires into hematite, by warming the sample to temperatures exceeding 530 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hansen, M.F., Morup, S.: Models for the dynamics of interacting magnetic nanoparticles. J. Magn. Magn. Mater. 184, 262 (1998).CrossRefGoogle Scholar
2.Morup, S., Bodker, F.: Size dependence of the properties of the hematite nanoparticles. Europhys. Lett. 52, 217 (2000).Google Scholar
3.Bodker, F., Morup, S., Linderoth, S.: Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994).CrossRefGoogle ScholarPubMed
4.Kliava, J., Berger, R.: Size and shape distribution of magnetic nanoparticles in disordered systems: Computer simulations of superparamagnetic resonance spectra. J. Magn. Magn. Mater. 205, 328 (2005).CrossRefGoogle Scholar
5.Carbone, C., Di Bendetto, F., Marescotti, P., Sangregorio, C., Sorace, L., Lima, N., Romanelli, M., Lucchetti, G., Cipriani, C.: Neutral Fe-oxide and -oxyhydroxide nanoparticles: An EPR and SQUID investigation. Mineral. Petrol. 85, 19 (2005).CrossRefGoogle Scholar
6.Cornell, R.M., Schwertmann, U.: The Iron Oxides (Wiley-VCH Verlag, Weinheim, Germany, 2003).CrossRefGoogle Scholar
7.Berger, R., Bissey, J., Kliava, J., Daubric, H., Estournés, C.: Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles. J. Magn. Magn. Mater. 234, 535 (2001).CrossRefGoogle Scholar
8.Ayyub, P., Multani, M., Barma, M., Palkar, V.R., Vijayaraghavan, R.: Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3. J. Phys. C: Solid State Phys. 21, 2229 (1988).CrossRefGoogle Scholar
9.Schroeert, D., Nininger, R.C. Jr.: Morin transition in α–Fe2O3 microcrystals. Phys. Rev. Lett. 19, 632 (1967).CrossRefGoogle Scholar
10.Yamamoto, N.: The shift of the spin flip temperature of α–Fe2O3 fine particles. J. Phys. Soc. Jpn. 24, 23 (1968).CrossRefGoogle Scholar
11.Amin, N., Arajs, S.: Morin temperature of annealed submicronic α–Fe2O3 particles. Phys. Rev. B 35, 4810 (1987).CrossRefGoogle Scholar
12.Muench, G.J., Arajs, S., Matijevič, E.: Magnetic properties of monodispersed submicronic α–Fe2O3 particles. J. Appl. Phys. 52, 2493 (1981).CrossRefGoogle Scholar
13.Dormann, J.L., Cui, J.R., Sella, C.: Mössbauer studies of α–Fe2O3 antiferromagnetic small particles. J. Appl. Phys. 57, 4283 (1985).CrossRefGoogle Scholar
14.Kündig, W., Bömmel, H., Constabaris, G., Linquist, R.H.: Some properties of supported small α–Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142, 327 (1966).CrossRefGoogle Scholar
15.Mansilla, M. Vasquez, Zysler, R., Fiorani, D., Suber, L.: Annealing effects on magnetic properties of acicular hematite nanoparticles. Physica B (Amsterdam) 320, 206 (2002).CrossRefGoogle Scholar
16.Balasubramanian, R., Cook, D.C., Yamashita, M.: Magnetic relaxation in nano-phase chromium substituted goethite. Hyperfine Interact. 139/140, 167 (2002).CrossRefGoogle Scholar
17.Mitov, I., Paneva, D., Kunev, B.: Comparative study of the thermal decomposition of iron oxyhydroxides. Thermochim. Acta 386, 179 (2002).CrossRefGoogle Scholar
18.Burleson, D.J., Penn, R. Lee: Two-step growth of goethite from ferrihydrite. Langmuir 22, 402 (2006).CrossRefGoogle ScholarPubMed
19.Mohapatra, M., Sahoo, S.K., Mohanty, C.K., Das, R.P., Anand, S.: Effect of Ce(IV) doping on formation of goethite and its transformation to hematite. Mater. Chem. Phys. 94, 417 (2005).CrossRefGoogle Scholar
20.Berger, R., Kliava, J., Bissey, J.C., Baietto, V.: Magnetic resonance of superparamagnetic iron-containing nanoparticles in annealed glass. J. Appl. Phys. 87, 7389 (2000).CrossRefGoogle Scholar
21.Berger, R., Bissay, J., Kliava, J.: Lineshapes in magnetic resonance spectra. J. Phys.: Condens. Matter 12, 9347 (2000).Google Scholar
22.Card Information: Name: alpha-Iron Oxide, Hematite, Formula: Fe2 O3, PDF Number: 72-469, Quality: calculated, Subfiles: inorganic mineral alloy COR FIZ PHR, Reference: R.L. Blake, R.E. Hessevick, T. Zoltai, and L.W. Finger, Am. Mineral. 51, 123 (1966) Calculated from ICSD using POWD-12++, (1997).Google Scholar
23.Tsoi, G.M., Senaratne, U., Tackett, R.J., Buc, E.C., Naik, R., Vaishnava, P.P., Naik, V.M., Wenger, L.E.: Memory effects and magnetic interactions in a γ–Fe2O3 nanoparticle system. J. Appl. Phys. 97 10J507(2005).CrossRefGoogle Scholar
24.Kim, T., Reis, L., Rajan, K., Shima, M.: Magnetic behavior of iron oxide nanoparticle-biomolecule assembly. J. Magn. Magn. Mater. 295, 132 (2005).CrossRefGoogle Scholar